
101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 1 of 114

Promoting and Incentivising Federated, Trusted, and Fair Sharing and

Trading of Interoperable Data ASsets

D2.2
Data Management and Protection

services -
Alpha version

Editor(s) Yury Glikman

Lead Beneficiary FHG

Status Final

Version 1.00

Due Date 30/04/2024

Delivery Date 31/05/2024

Dissemination Level PU

 Funded by the European Union under Grant Agreement 101093016. Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Commission. Neither the European Union nor
the granting authority can be held responsible for them.

Ref. Ares(2024)3935818 - 31/05/2024

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 2 of 114

Project PISTIS – 101093016

Work Package WP2 - PISTIS Data Spaces Factory and Trusted Data Management
Services

Deliverable D2.2 Data Management and Protection services - Alpha version

Contributor(s) Suite5, ATOS, FHG, EUT, SPH, UBITECH, ATHENA, ASSENTIAN, ICCS

Reviewer(s) VIF, SUITE5, GOLDAIR

Abstract This deliverable presents the Alpha release of the core PISTIS factory
services dealing with data management and protection, and of the
Data Explorer Service

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 3 of 114

Executive Summary

PISTIS aims to develop a reference platform for the sharing/trading and monetisation of the

proprietary data of an organization, guaranteeing a secure, trusted and controlled exchange

and usage of data assets and data-driven intelligence.

This document presents the Alpha version of the design and implementation of the PISTIS

components belonging to one of the following bundles from the PISTIS architecture, as coming

out of the design and development activities of WP2 of the project:

• Data Management and Assessment bundle, that is responsible for the collection of

data from existing repositories available to an organisation, the refinement,

transformation, and improvement of data, judging also its quality and providing

services to improve it and make it interoperable.

• Data & Metadata Storage bundle, that is delivering a catalogue for the data available

for each organisation and those that are made available as “published” data over the

whole ecosystem, alongside with the appropriate data storage facilities to hold the

data.

• Data Discovery bundle, that provides services for searching and discovering the

available data assets that might be of interested to a Data Consumer

• Data Exchange bundle, that facilitates the peer-to-peer exchange of the data assets

between a Data provider and a Data Consumer, adhering to the terms of the contract

that has been signed to govern the overall transaction.

• Security, Trust & Privacy Preservation bundle, that is offering services for

strengthening data security and privacy.

• AI & Interoperability Repos bundle, that provides the different repositories for storing

and propagating different models (data models, AI models and metadata models) that

need to be consumed by the various components.

The Alpha version of the design and implementation of the components from the Data

Monetisation, Transaction Services and Ledgers bundles is presented in the deliverable D3.2.

The source code of the components presented in D2.2 and D2.3 is managed in the project’s

GitHub repository at: https://github.com/orgs/PISTIS-Platform/. The access to it can be

provided upon a request.

As the next step, the consortium will integrate the components presented in this deliverable

and in the deliverable D3.2 into the Alpha release of the PISTIS platform (D4.2).

https://github.com/orgs/PISTIS-Platform/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 4 of 114

Table of Contents

1 Introduction .. 13

1.1 Document structure ... 14

2 Data Management and Assessment Bundle ... 15

2.1 Data Check-In ... 15

2.1.1 Component Description ... 15

2.1.2 Technology Background ... 16

2.1.3 Component Backlog ... 16

2.1.4 Functional Requirements ... 17

2.1.5 Non-Functional Requirements ... 17

2.1.6 Component’s Main Elements and Internal Architecture 17

2.1.7 Mock-ups and Screenshots .. 19

2.2 Data Transformation .. 20

2.2.1 Component Description ... 20

2.2.2 Technology BackgrounD ... 21

2.2.3 Component Backlog ... 21

2.2.4 Functional Requirements ... 22

2.2.5 Non-Functional Requirements ... 22

2.2.6 Component’s Main Elements and Internal Architecture 22

2.2.7 Mock-ups and Screenshots .. 23

2.3 Job configurator ... 25

2.3.1 Component Description ... 25

2.3.2 Technology Background ... 25

2.3.3 Component Backlog ... 25

2.3.4 Functional Requirements ... 25

2.3.5 Non-Functional Requirements ... 26

2.3.6 Component’s Main Elements and Internal Architecture 26

2.3.7 Mock-ups and Screenshots .. 28

2.4 Analytics Engine ... 30

2.4.1 Component Description ... 30

2.4.2 Technology Background ... 31

2.4.3 Component Backlog ... 31

2.4.4 Functional Requirements ... 31

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 5 of 114

2.4.5 Non-Functional Requirements ... 31

2.4.6 Component’s Main Elements and Internal Architecture 32

2.4.7 Mock-ups and Screenshots .. 32

2.5 Data Enrichment ... 33

2.5.1 Component Description ... 33

2.5.2 Technology Background ... 34

2.5.3 Component Backlog ... 34

2.5.4 Functional Requirements ... 34

2.5.5 Non-Functional Requirements ... 35

2.5.6 Component’s Main Elements and Internal Architecture 35

2.5.7 Mock-ups and Screenshots .. 36

2.6 Data Quality Assessment .. 37

2.6.1 Component Description ... 37

2.6.2 Technology Background ... 37

2.6.3 Component Backlog ... 37

2.6.4 Functional Requirements ... 38

2.6.5 Non-Functional Requirements ... 38

2.6.6 Component’s Main Elements and Internal Architecture 38

2.6.7 Mock-ups and Screenshots .. 41

2.7 Data Insights Generator ... 43

2.7.1 Component Description ... 43

2.7.2 Technology Background ... 43

2.7.3 Component Backlog ... 43

2.7.4 Functional Requirements ... 43

2.7.5 Non-Functional Requirements ... 44

2.7.6 Component’s Main Elements and Internal Architecture 44

2.7.7 Mock-ups and Screenshots .. 44

3 Data & Metadata Storage Bundle ... 45

3.1 Data Catalogues.. 45

3.1.1 Component Description ... 45

3.1.2 Technology Background ... 45

3.1.3 Component Backlog ... 46

3.1.4 Functional Requirements ... 47

3.1.5 Non-Functional Requirements ... 47

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 6 of 114

3.1.6 Component’s Main Elements and Internal Architecture 47

3.1.7 Mock-ups and Screenshots .. 49

3.2 Factory Data Storage .. 50

3.2.1 Component Description ... 50

3.2.2 Technology Background ... 51

3.2.3 Component Backlog ... 51

3.2.4 Functional Requirements ... 52

3.2.5 Non-Functional Requirements ... 52

3.2.6 Component’s Main Elements and Internal Architecture 52

3.2.7 Mock-ups and Screenshots .. 54

4 Data Discovery Bundle .. 54

4.1 Distributed Query Engine ... 54

4.1.1 Component Description ... 54

4.1.2 Technology Background ... 54

4.1.3 Component Backlog ... 55

4.1.4 Functional Requirements ... 55

4.1.5 Non-Functional Requirements ... 56

4.1.6 Component’s Main Elements and Internal Architecture 56

4.1.7 Mock-ups and Screenshots .. 57

5 Data Exchange Bundle .. 59

5.1 PISTIS Data Factory Connector ... 59

5.1.1 Component Description ... 59

5.1.2 Technology Background ... 59

5.1.3 Component Backlog ... 59

5.1.4 Functional Requirements ... 60

5.1.5 Non-Functional Requirements ... 61

5.1.6 Component’s Main Elements and Internal Architecture 61

5.1.7 Mock-ups and Screenshots .. 62

5.2 Smart Contract Checker ... 62

5.2.1 Component Description ... 62

5.2.2 Technology Background ... 63

5.2.3 Component Backlog ... 63

5.2.4 Functional Requirements ... 64

5.2.5 Non-Functional Requirements ... 64

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 7 of 114

5.2.6 Component’s Main Elements and Internal Architecture 65

5.2.7 Mock-ups and Screenshots .. 65

6 AI & Interoperability Repositories Bundle .. 66

6.1 PISTIS Models Repository ... 66

6.1.1 Component Description ... 66

6.1.2 Technology Background ... 67

6.1.3 Component Backlog ... 67

6.1.4 Functional Requirements ... 68

6.1.5 Non-Functional Requirements ... 68

6.1.6 Component’s Main Elements and Internal Architecture 68

6.1.7 Mock-ups and Screenshots .. 69

6.2 Data Factory ML Models Repository .. 71

6.2.1 Component Description ... 71

6.2.2 Technology Background ... 71

6.2.3 Component Backlog ... 71

6.2.4 Functional Requirements ... 72

6.2.5 Non-Functional Requirements ... 72

6.2.6 Component’s Main Elements and Internal Architecture 72

6.2.7 Mock-ups and Screenshots .. 73

6.3 AI Model Editor .. 73

6.3.1 Component Description ... 73

6.3.2 Technology Background ... 73

6.3.3 Component Backlog ... 74

6.3.4 Functional Requirements ... 74

6.3.5 Non-Functional Requirements ... 74

6.3.6 Component’s Main Elements and Internal Architecture 75

6.3.7 Mock-ups and Screenshots .. 75

7 Security, Trust & Privacy Preservation Bundle ... 76

7.1 Anonymizer .. 77

7.1.1 Component Description ... 77

7.1.2 Technology Background ... 78

7.1.3 Component Backlog ... 81

7.1.4 Functional Requirements ... 82

7.1.5 Non-Functional Requirements ... 82

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 8 of 114

7.1.6 Component’s Main Elements and Internal Architecture 84

7.1.7 Screenshots .. 84

7.2 Lineage Tracker .. 88

7.2.1 Component Description ... 88

7.2.2 Technology Background ... 88

7.2.3 Component Backlog ... 88

7.2.4 Functional Requirements ... 89

7.2.5 Non-Functional Requirements ... 89

7.2.6 Component’s Main Elements and Internal Architecture 90

7.2.7 Mock-ups and Screenshots .. 91

7.3 GDPR checker ... 93

7.3.1 Component Description ... 93

7.3.2 Technology Background ... 93

7.3.3 Component Backlog ... 93

7.3.4 Functional Requirements ... 94

7.3.5 Non-Functional Requirements ... 94

7.3.6 Component’s Main Elements and Internal Architecture 95

7.3.7 Mock-ups and Screenshots .. 95

7.4 Searchable Encryption .. 96

7.4.1 Component Description ... 96

7.4.2 Technology Background ... 96

7.4.3 Component Backlog ... 97

7.4.4 Functional Requirements ... 97

7.4.5 Non-Functional Requirements ... 98

7.4.6 Component’s Main Elements and Internal Architecture 98

7.4.7 Mock-ups and Screenshots .. 99

7.5 Encryption/Decryption Engine ... 99

7.5.1 Component Description ... 99

7.5.2 Technology Background ... 99

7.5.3 Component Backlog ... 99

7.5.4 Functional Requirements ... 100

7.5.5 Non-Functional Requirements ... 100

7.5.6 Component’s Main Elements and Internal Architecture 100

7.5.7 Mock-ups and Screenshots .. 101

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 9 of 114

7.6 Access Policy Editor .. 101

7.6.1 Component Description ... 101

7.6.2 Technology Background ... 102

7.6.3 Component Backlog ... 102

7.6.4 Functional Requirements ... 103

7.6.5 Non-Functional Requirements ... 104

7.6.6 Component’s Main Elements and Internal Architecture 105

7.6.7 Mock-ups and Screenshots .. 106

8 Conclusions ... 114

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 10 of 114

List of Figures

Figure 1: PISTIS Architecture .. 13

Figure 2. Data Check-In Architecture ... 18

Figure 3: Data Check-In UI Mock-up .. 20

Figure 4: Data Transformation Component’s Internal Architecture .. 23

Figure 5: Data Transformation Component UI Mock-up ... 24

Figure 6: Job Configurator Architecture ... 26

Figure 7: Workflow and Job DAGs .. 27

Figure 8: Service design principles approach 1 .. 27

Figure 9: Service design principles approach ... 28

Figure 10: Job Configurator GUI Mock-up ... 29

Figure 11: Data Check-In GUI Mock-up .. 29

Figure 12: Data Pipeline Editing GUI Mock-up ... 30

Figure 13: Analytics Engine Architecture ... 32

Figure 14: Analytics Engine GUI. .. 33

Figure 15: Data Enrichment Internal Architecture ... 35

Figure 16: Display the dataset .. 36

Figure 17: Select the properties of the data model ... 36

Figure 18: Metadata Quality Assessment service internal architecture 39

Figure 19: Data Quality Assessment service internal architecture .. 40

Figure 20: Overview of the assessment result with the score "bad" 41

Figure 21: Dive in into the result for the metrics of the dimension reusability 42

Figure 22: Historic results for the dimension reusability ... 42

Figure 23: Component’s Internal Architecture .. 44

Figure 24: Data Catalogue’s Internal Architecture ... 48

Figure 25: A list of datasets with filters on the left-side .. 49

Figure 26: Presentation of a dataset and its associated metadata.. 50

Figure 27: Factory Data Storage Internal Architecture .. 53

Figure 28: Distributed Query Engine Internal Architecture ... 57

Figure 29: Mock-up for searching datasets using the GUI ... 57

Figure 30: Screenshot for searching datasets using the GUI (under development) 58

Figure 31: PISTIS Factory Connector’s Internal Architecture ... 62

Figure 33: Smart Contract Checker High Level Architecture ... 65

Figure 34: PISTIS Model Repository Internal Architecture .. 69

Figure 35: PISTIS Models Repository – Models Management ... 70

Figure 36: PISTIS Models Repository – Upload of New Artefact ... 70

Figure 37: ML Model Repo Architecture .. 72

Figure 38: MinIO GUI .. 73

Figure 39: AI Model Editor Architecture .. 75

Figure 40: Jupyter Lab UI. ... 76

Figure 41: Component’s Internal Architecture .. 84

Figure 42: Initial Anonymiser Screen ... 84

Figure 43: Anonymiser Obfuscation Utilities ... 85

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 11 of 114

Figure 44: Obfuscation Anonymiser Preview ... 85

Figure 45: Anonymiser K-Anonymity ... 86

Figure 46: Anonymiser K-Anonymity Solutions .. 86

Figure 47: Preview of Dataset after K-Anonymity Solution is selected 87

Figure 48: Lineage Tracker Architecture Diagram .. 91

Figure 49: View Dataset Lineage .. 92

Figure 50: View Dataset Version Changes.. 92

Figure 51: GDPR Checker High Level Architecture ... 95

Figure 52: Searchable Encryption high-level Architecture ... 98

Figure 53: Encryption/Decryption Engine High Level Architecture 101

Figure 54: Access Policy Editor Internal Architecture .. 105

Figure 55: Listing of access policies during data asset injection phase 106

Figure 56: Registration of a new access policy during data asset injection phase 107

Figure 57: Listing of access policies during data asset publication phase 107

Figure 58: Registration of a new access policy during data asset publication phase 108

Figure 59: Listing of PISTIS users within access policy editor .. 108

Figure 60: Create (or edit) a PISTIS user ... 109

Figure 61: Listing of registered access policies within access policy editor 109

Figure 62: Registration of a new access policy within access policy editor based on user’s role

 .. 110

Figure 63: Registration of a new access policy within access policy editor based on user’s

organization attributes ... 110

Figure 64: Registration of a new access policy within access policy editor based on user’s

organization .. 111

Figure 65: Registration of a new access policy within access policy editor based on user’s

attributes .. 112

Figure 66: Registration of a new access policy within access policy editor based on data asset’s

attributes .. 112

Figure 67: Registration of a new access policy within access policy editor based on time period

 .. 113

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 12 of 114

Terms and Abbreviations

ABAC Attribute Based Access Control

ABE Attribute Based Encryption

ADB Asser Description Bundle

AI Artificial Intelligence

API Application Programming Interface

CF Collaborative filtering

CRUD Create, Read, Update, Delete

DCAT Data Catalogue Vocabulary

DLT Distributed Ledger Technology

DNN Deep neural networks

DoA Description of Action

DSE Dynamic Searchable Encryption

DVDs Data Value Dimensions

DVS Data Valuation Service

eIDAS2 electronic IDentification, Authentication and trust Services 2

FAIR Findable, Accessible, Interoperable, Reusable

FTP File Transfer Protocol

GDPR General Data protection Regulation

GNN Graph Neural Networks

HTTP HyperText Transfer Protocol

ID Identity

IDS International Data Spaces

IOTA Internet of Things Application

JSON JavaScript Object Notation

JWT JSON Web Token

kNN k-Nearest Neighbour

LSH Locality-Sensitive Hashing

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MVP Minimum Viable Product

OIDC OpenID Connect

PROV Provenance

RBAC Role Based Access Control

RDF Resource Description Framework

REST Representational state transfer

SE Searchable Encryption

SQL Structured Query Language

SSI Self-Sovereign Identity

ToC Table of Contents

UUID Universal Unique Identifier

WP Work Package

XAI eXplainable AI

YAML Yet Another Modelling Language

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 13 of 114

1 INTRODUCTION

The PISTIS project follows the agile development methodology by designing, implementing

and evaluating the components in two iterations. At the previous steps of work the technical

requirements and user stories were collected (D1.2) and the relevant methods technologies,

models and specifications for addressing them were analysed (D2.1, D3.1). Then the initial

architecture of the PISTIS Platform depicting the individual components and relations

between them was defined in the deliverable D4.1.

This deliverable is the very first (Alpha) version of the design and implementation of the core

PISTIS factory components dealing with data discovery, management and protection. The

document accompanies the implementation of the components by documenting their

purpose, requirements, architecture, technologies used in their implementation and the user

interface (if available). The components compose the Data Management and Assessment,

Data & Metadata Storage, Data Discovery, Data Exchange, Security, Trust & Privacy

Preservation and AI & Interoperability Repos bundles of the PISTIS architecture shown in the

Figure below.

Figure 1: PISTIS Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 14 of 114

The Alpha version of another set of the PISTIS components belonging to the Data

Monetisation, Transaction Services and Ledgers bundles is presented in the deliverable D3.2.

Both sets of the PISTIS components are going to be integrated in the Alpha release of the

PISTIS platform (D4.1). This will be the end of the first design & development iteration, which

will be followed by two more (Beta and 1.0) iterations of the development process. At the end

of each iteration a new version of the platform together with the updated architecture and

relevant documentation will be published.

The source code of the alpha releases of the PISTIS components is managed in the project’s

GitHub repository, access to which can be provided upon a request:

https://github.com/orgs/PISTIS-Platform/

1.1 DOCUMENT STRUCTURE

The document is structured as follows:

Section 1 is the introduction and this document structure description.

Sections 3 - 7 describe the different bundles and present details on the different components

belonging to each bundle, as well as the APIs and the Sequence Diagrams of each component.

Finally, section 8 concludes the document.

https://github.com/orgs/PISTIS-Platform/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 15 of 114

2 DATA MANAGEMENT AND ASSESSMENT BUNDLE

The Data Management and Assessment bundle is responsible for the collection of data from

existing repositories available to an organisation, the refinement, transformation, and

improvement of data, judging also their quality and providing services to improve them and

make them interoperable.

This bundle consists of the following components:

• Data Check-In

• Data Transformation

• Job Configurator

• Analytics Engine

• Data Enrichment

• Data Quality Assessment

• Data Insights Generator

These are presented in the following sub-sections.

2.1 DATA CHECK-IN

2.1.1 COMPONENT DESCRIPTION

Data Check-in will enable support for data sources that will supply data for the solution

workflow, as data sources can come in a variety of forms (repositories, data streaming flows,

and so on).

Data Check-In will serve as input for the whole data workflow in the PISTIS platform allowing

several ways for data ingestion which must include the followings:

• File upload

• FTP Server

• API

• KAFKA

• MQTT

Data Check-In offering in terms of functionalities is detailed below:

• UploadData: This functionality should allow the end user to provide a data file to be

stored in a server to be consumed by the subsequent data processing workflow

defined in the PISTIS platform. Some basic verifications could be carried out in order

to check some requirements regarding the data file provided (e.g. size limits, data

formats, etc.).

• GetDataFromFTP: In case the data to be ingested by the workflow is stored in an FTP

server, a method will be provided to retrieve that data. This method should be called

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 16 of 114

providing all the information needed to get access to the data (I.e. endpoint, path to

the file, filename, required credentials, etc.).

• GetDataFromAPI: in this case, the data is retrieved from a defined API or else Data

Space Conectors. The connectors should be compatible with GAIA-X and IDS. It will be

required, as in the previous case, to get all the details (as well as credentials when

necessary) needed in order to get access to the required data source.

• GetDataFromSubscription: The possibility to subscribe as a client to a topic is also being

evaluated, allowing to get data from this kind of data source (I.e. kafka or MQTT

topics). By means of these, data can be consumed following a given criteria (e.g.

defining a time window, a data limit, etc.) and then set for its processing.

2.1.2 TECHNOLOGY BACKGROUND

The main technology used for the Component is Apache Nifi.

Data Check-In will define several Nifi workflows to support the different ways of data

ingestion.

2.1.3 COMPONENT BACKLOG

This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority1

Acceptance
Criteria

Status2 WP1
User

Stories As a <Role> I want to <Action>,
so that
<Reason>

UC_01 Data Provider
Upload a file into
Pistis ecosystem.

Have data
available in
Pistis
ecosystem

Alpha

Data stored
properly in
Factory Data
Storage.

Done PISTIS.
OUS.0

1

UC_02 Data Provider
Inject Data coming
from an FTP Server.

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory Data
Storage.

Upcom
ing

PISTIS.
OUS.0

1

UC_03 Data Provider
Inject Data coming
from subscription
(kafka, MQTT)

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory Data
Storage.

Upcom
ing

PISTIS.
OUS.0

1

UC_04 Data Provider
Inject Data coming
from a Data Space
(API)

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory Data
Storage.

Upcom
ing

PISTIS.
OUS.0

1

UC_05 Data Provider
Manage Data Check-
In from GUI

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory Data
Storage.

Upcom
ing

PISTIS.
OUS.0

1

1 Priority based on the releases: Alpha / Beta / v1.00
2 Upcoming / In Progress / Done (delivered in alpha/beta/v1.00) / Obsolete

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 17 of 114

2.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 PISTIS supports data
injection/registration from
different data source type.

UC_01, UC_02,
UC_03, UC_04

PISTIS platform must support
multiple type of data sources such as
FTP, HTTP APIs, SFTP, DB connections,
etc.

FR_02 PISTIS supports various format
and description languages of
metadata.

UC_01, UC_02,
UC_03, UC_04

PISTIS platform must support various
format (JSON, XML, RDF, etc.) and
various description languages or
standards or ontologies for the
metadata.

2.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised users can register datasets.

2.1.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

The Data Validation and Checking Module (DACM) and the Data Injection Module (DIM) are

the two primary modules of the Data Check-In component, as depicted in Figure 2, which also

displays the internal architecture of the component.

The business logic found in the DACM will enable:

1) Perform some basic verifications to confirm that the data file requirements—such as

size limitations and data formats—are met, and

2) Verify that all the information required to ensure access to the data source has been

supplied, including any access credentials that may be required.

After the DACM has verified and guaranteed access to the data, the DIM will be responsible

for ingesting them. DIM iwill include dedicated submodules for every kind of ingestion needed

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 18 of 114

by PISTIS, including FTP batch file uploads, Kafka or MQTT listeners for streaming data, and

API retrieval.

 Figure 2. Data Check-In Architecture

Future iterations of Data Check-In will investigate the usage of Nifi 3 technology to support

data injection through a queue-type system like Kafka or MQTT, an FTP server, or a

subscription to a REST API. A distributed system called Apache NiFi is devoted to data

extraction, transformation, and loading (ETL).

Ingestion, routing, and administration of data flows between various systems may be done

effectively and visually with NiFi's design. It can be used to accomplish this by adding bespoke

connectors in addition to the more than 300 external connectors that are already in place.

The ability to arrange data flows by dragging and connecting the required components onto

the admin website canvases is one of NiFi's strong points. Therefore, understanding and

properly configuring each component that you wish to use is more important than having

specific programming knowledge.

For instance, it is quite easy to use Apache Nifi to produce messages for Kafka and receive

messages from Kafka; all you have to do is drag the processors into the UI and set their settings

accordingly. The concept is the same for every processor; in this manner, you may assign all

ETL tasks to Apache Nifi in order to maximise the utilisation of data sources and optimise the

code in your applications.

3 https://nifi.apache.org/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 19 of 114

2.1.7 MOCK-UPS AND SCREENSHOTS

The UI of this component will be a part of the data pipeline UI bundle, as seen in Figure 3. The

objective is to be able to identify the component in charge of facilitating data ingestion as part

of a data pipeline. The design of the corresponding user interface (UI) is built on four separate

parts, which are applicable to both Data Check-In and any other potentially orchestrable

component defined in a data pipeline using the Job Configurator:

1) Data Source: Common block for all selectable components in a data pipeline. The

endpoint and its access credentials, among other pertinent details, must be supplied

in this block in order to access the data source.

2) Data Ingestion: Specific block for the component. Depending on the type of ingestion

chosen, the block known as "data injection" for data check-in will dynamically display

the various fields that need to be filled out.

3) Metadata: A block for allowing the user to register specific metadata regarding the

dataset that will be ingested during the chechin operation.

4) Storage Policy: Common block for all selectable components in a data pipeline. This

block allows you to choose whether the output that is produced after a service is

executed should be stored in the Factory Data Storage or (temporarily) in memory.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 20 of 114

Figure 3: Data Check-In UI Mock-up

2.2 DATA TRANSFORMATION

2.2.1 COMPONENT DESCRIPTION
Data transformation component aims at providing the possibility of performing some

preprocessing tasks on the datasets to be handled by the PISTIS platform. These

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 21 of 114

transformations can be very useful in order to improve the quality of the dataset, handling

some aspects of the dataset that are commonly considered to diminish its value (e.g. missing

values, wrong values, unformatted strings, etc.).

In order to perform that dataset preprocessing, a set of transformations can be defined in

order to be applied over the dataset, setting up the transformation to apply, some detailed

settings depending on the given transformation to apply, some filtering on the fields or

registries to be transformed, etc.

2.2.2 TECHNOLOGY BACKGROUND
Data transformation will be based on Python, exploiting commonly used frameworks for data

handling such as pandas, which ease the loading and processing of datasets by means of

optimized data structures such as DataFrames (an optimized python-based data structure to

handle datasets). Current version supports available data transformations listing (including:

string replacement, missing values replacement using fixed or statistical values or missing

values removal) and its application.

2.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01
Data
consumer

Get a list of
available
transformations to
perform on PISTIS
platform

I can choose
what
transformatio
n to use

Alpha

Get a list
with all the
transformati
ons offered
by the
PISTSI
platform

Done PISTIS.
OUS.0

3

UC_02
Data
consumer

Perform a PISTIS
offered
transformation on
a dataset using the
PISTIS platform

I can get my
dataset
modified

Alpha

The dataset
has been
updated
following
the
transformati
on
requested

Done PISTIS.
OUS.0

3

UC_03 Data Provider
Manage Data
Transformations
from GUI

Have data
available in
Pistis
ecosystem

Beta

Data stored
properly in
Factory
Data
Storage
after
applying
transfomati
ons defined
by the user.

Upco
ming

PISTIS.
OUS.0

3

UC_04
Data
consumer

Get an improved
set of
transformations
available

I can aply a
wider set of
transformatio
ns to my
dataset

Beta

The
catalogue of
available
transformati
ons in beta

Upco
ming

PISTIS.
OUS.0
3

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 22 of 114

version is
bigger than
the
catalogue in
alpha
version

2.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related

Use Cases
Comments

FR_01 PISTIS provides a definition of the
data transformations supported

US_01,
US_03

The component should provide a
formal definition of the data
transformations supported along
with the format the request
should be formatted

FR_02 PISTIS allows the transformation
of a given dataset according to
the definition of the
transformation requested

US_02,
US_03

2.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can transform datasets.

Compatibility
NFR2 The component must be able to accept the input data in the CSV format

(Pandas DataFrame compliant)

Compatibility
NFR3 Component transformation definition input must be compliant with the

json schema of the transformations supported

2.2.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
As it can be seen in the following diagram, the component consists of two main logic modules:

the first module is responsible for checking the validity of the transformations defined in the

API call to be processed and the second module is responsible for the application of the logic

of the transformations. The second module is the one responsible for loading the dataset

passed as input and perform the transformation requested.

To that end, the component transformations have been designed in a modular and isolated

way, defining a transformation template that ease the development of new transformations

(just defining the schema of its required parameters and the logic of the transformation itself).

Each one of these implemented transformations are scanned on deployment time and added

automatically to the component transformation catalog offered via GET API call.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 23 of 114

Figure 4: Data Transformation Component’s Internal Architecture

2.2.7 MOCK-UPS AND SCREENSHOTS
The UI of this component highly depends on the transformations defined. In case a dynamic

GUI can be implemented, this GUI should consume the response from the GET API call in order

to know which transformations are defined in the component and the different inputs that

each transformation will require. In case that is not possible, the GUI should allow the input

of the JSON of the different transformations to apply to the dataset to be processed.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 24 of 114

Figure 5: Data Transformation Component UI Mock-up

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 25 of 114

2.3 JOB CONFIGURATOR

2.3.1 COMPONENT DESCRIPTION
The Job Configurator oversees defining templates to support data pipeline jobs, as well as

orchestrating them through the development of complicated workflows.

Job Configurator provides a high-level format for defining workflow and jobs to avoid only

supporting those formats accepted by the workflow orchestration tool, which is Apache

Airflow.

2.3.2 TECHNOLOGY BACKGROUND
The main technology used for the Component is Apache Airflow.

2.3.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1 User
Stories

As a
<Role>

I want to
<Action>,

so that <Reason>

UC_01
Data
Provid
er

Define a data
pipeline
related Job

Support data check-
in, data
transformation and
analytics insights
tasks

Alpha
Job Template
as Airflow
DAG

Done PISTIS.SOUS.01,

PISTIS.SOUS.02,

PISTIS.SOUS.03

UC_02
Data
Provid
er

Define a
workflow
because of
composing
different jobs

Support data pipeline Alpha
Workflow
template as
Airflow DAG

Done PISTIS.SOUS.01,

PISTIS.SOUS.02,

PISTIS.SOUS.03

UC_03
Data
Provid
er

Define and
run a
workflow
from a GUI

Support data pipeline Beta

DAG
associated to
workflow
definition
instantiated
and executed
properly over
Apache
Airflow.

Upco
ming

PISTIS.SOUS.01,

PISTIS.SOUS.02,

PISTIS.SOUS.03

2.3.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 Provide support to define and execute
Jobs templates to support data
pipeline related tasks

UC_01

FR_02 Provide support to orchestrate jobs to
support data pipelines

UC_02

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 26 of 114

2.3.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can transform datasets.

2.3.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

Figure 6 illustrates the internal architecture of the Job Configurator, which is primarily based

on the use of Apache Airflow, namely on two directed acyclic graphs, or DAGs: a) Workflow

DAG (WDAG) and b) Job DAG (JDAG).

Figure 6: Job Configurator Architecture

The workflow execution is carried out via the WDAG, whose internal structure is depicted in

Figure 7. Like the WDAG, the JDAG oversees carrying out a job or component in the context

of PISTIS. Figure 7 illustrates the Job Dag's task-based organizational structure.

Specifically, the internal flow of the WDAG would be as follows:

1) Get the current Job from the workflow definition,

2) Resolve the mappings defined over the current job,

3) Trigger the Job DAG using the current job values,

4) Finally, if there are jobs pending, return to point 1), otherwise stop the workflow

execution.

If we now focus on the Job DAG, its internal flow will be as follows:

1) Retrieve the data, using the required information from the data source.

2) Then, invoke the service endpoint specified in the job definition.

3) Check the storage policy and save the data response from point 2) in the Factory Data

Storage or Memory as specified.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 27 of 114

4) Return control to Workflow DAG.

Figure 7: Workflow and Job DAGs

Finally, it is important to highlight that any service potencially orchestrable using the Job

Configurator should satisfy the design principles shown in Figure 8.

Figure 8: Service design principles approach 1

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 28 of 114

The choosen by the consortium format for working with data sources at the workflow level in

the Alpha version of the component is CSV, which was chosen over JSON, TSV, and Parquet.

CSV is the most simple and common format used by demonstrator partners in PISTIS.

Figure 9 depicts an alternative way to defining an orchestrable service in the context of PISTIS,

with the main concept being format conversion.

Figure 9: Service design principles approach

For the Alpha version, the Job Configurator will be based on the selection and execution of

services that support Approach 1, with CSV as the fixed format for data sources.

2.3.7 MOCK-UPS AND SCREENSHOTS

The UI definition for the Job Configurator has been included within the Data Pipeline UI

bundle. The Job Configurator UI will be built on the idea of easily creating a workflow of jobs

by dragging and dropping services and linking them to the next one with an arrow. Initially,

the user begins with an empty panel onto which the user drags a series of services displayed

just below the panel, as illustrated in Figure 10.

When a service is moved to the panel, either by selecting it or situating itself on it, a new panel

at the bottom appears dynamically with the appropriate fields whose contents must be

supplied for the service to run correctly. Figure 11 is an example of this using the data check-

in service.

In addition to the composition and service instantiation parts, the UI will include a button for

launching the workflow once it has been defined.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 29 of 114

Figure 10: Job Configurator GUI Mock-up

Figure 11: Data Check-In GUI Mock-up

Finally, as shown in Figure 12, an option represented by a pencil has been added to the upper

right corner of the main panel to allow revision of the source code on which the specification

of the workflow or data pipeline is based, which is written in Json.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 30 of 114

Figure 12: Data Pipeline Editing GUI Mock-up

2.4 ANALYTICS ENGINE

2.4.1 COMPONENT DESCRIPTION

In order to run ML/DL analytics pipelines and transform the primary data artifacts into insights,

the Analytics Engine component can be automatically deployed to and self-hosted in

computational resources that the user selects. This allows the trading of derivative data

assets, such as the analysis's outputs. The engine could be integrated with the ML Model

Registry to support a collection of pretrained AI models for various domains, which the PISTIS

Data Consumers can utilize to expedite the creation of their AI pipelines.

Furthermore, the presence of an analytics engine will enable other modules of the overall

PISTIS environment to benefit from its functionalities, such as enabling automatic data

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 31 of 114

transformations, accommodating ML-based anonymisation activities, and running analyses

relevant to the PISTIS market, such as trend identifications, predictions, and so on.

2.4.2 TECHNOLOGY BACKGROUND
The main technology used for the Component is MLFLow and PostgreSQL.

2.4.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role> I want to <Action>, so that <Reason>

UC_01 Data Consumer

Generate an

analytics playground

custom deployment

instruction

Deploy a
playground
instance

Alpha
Check
deployment
file

Done PISTIS.
OUS.0

3

UC_02 Data Consumer Run some analytics Run analytics Beta
Enabling
playground
ecosystem

Upcom
ing

PISTIS.
OUS.0

3

UC_03 Data Consumer
Train an analytics
model

Create a new AI
Model

Beta
Check AI
Model

Upcom
ing

PISTIS.
OUS.0

3

UC_04 Data Consumer
Visualize analytics
results

Have a visual
analysis of the
results

V1.00

Access to
graphs
associated
with the
analytics
results

Upcom
ing

PISTIS.
OUS.0

3

2.4.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 Manage the ML lifecycle UC1, UC2, UC3,
UC4

2.4.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can analyse datasets.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 32 of 114

2.4.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

The analytics engine component’s internal architecture is composed of an integration of

different technologies, including PostgreSQL and MLFlow. By means of this, we can offer a set

of functionalities that rely on the modules that are part of the final combination of

technologies provided by the component. These modules include:

• Tracking module: Allows to keep track of the different metrics and objects defined by

the end user on each experiment.

• The Artifacts Management module: Allows the storage of objects tracked on the

experiments.

• Playground UI module: Offers a UI to interact with the component playground.

• Notebook module: Lets the end user to view and execute Jupyter notebooks.

• ML Pipeline Engine module: Is the module responsible for the execution of ML

pipelines.

• ML Pipeline Definition module: Allows the definition of ML pipelines (in this case

named as MLFlow recipes)

Figure 13: Analytics Engine Architecture

2.4.7 MOCK-UPS AND SCREENSHOTS

This component is powered primarily by MLFlow, which provides a proper GUI for managing

the different experiments created in order to perform different analytics on the data, by

means of tracking both artifacts and metrics resultant from these experiments. This tracking

allows the creation and management of those experiments as well as the visualization of the

different executions carried out in them, showing all the relevant values identified (and

tracked) by the end user. This allows to see the evolution of the different outcomes of an

experiment in accordance with the different inputs generated, offering the end user access to

all the tracked artifacts that lead to that output.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 33 of 114

Figure 14 shows the main screen of the component for experiment management, where the

different experiments generated will be listed out.

Figure 14: Analytics Engine GUI.

2.5 DATA ENRICHMENT

2.5.1 COMPONENT DESCRIPTION
The data enrichment component in PISTIS is included in the Data Ingestion and

Transformation module, which is in the premises of an organization. Along with the data

transformation component, this component is responsible to transform and enrich any

available data assets to increase its value for trading. Data enrichment refines and enhances

datasets to add more value and utilization to the existing data. Typically, data enrichment

refers to data harmonization using additional data sources. It combines information from

several data sources into a standardized format for further data analysis. The different source

of data could be in different file formats, naming conventions and disparate data sources.

The main objective of the Data Enrichment module in PISTIS is to parse a dataset available as

a file into a structured table with the respective domain specific data models. This allows the

users the flexibility to upload datasets as files and later transform them into PISTIS datasets.

This module supports the transformation of CSV, TXT and XLS files but for the alpha version,

only CSV files are available. This component constitutes of a frontend and a backend, the

backend serves the functionalities to parse a file into a table, along with keeping an updated

database of the PISTIS data models and the frontend provides the interface for the user to

select an appropriate data model for a table. After a file is transferred into a table with the

correct data model, the table is inserted into the Factory Data Storage. This way, the user will

always have access to the initial dataset as a file and the transformed table with a standardized

data model. It also allows the user the flexibility to transfer a file into multiple tables with

different data models.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 34 of 114

2.5.2 TECHNOLOGY BACKGROUND
The backend of the data enrichment module consists of a Python Flask App, and an SQLite

database. The Flask App serves a RESTful API that communicates with the frontend of this

component.

The frontend of the data enrichment module is built in Vue.js 3.0., using Pinia as the state

management framework and bootstrap CSS library.

2.5.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 Data provider
Fetch a file I
uploaded and apply
a transformation

A specific
transformation
can be
performed

Alpha
Has access to
the files

Done PISTIS.
OUS.0
1

UC_02 Data provider

Fetch the data
models stored in
PISTIS models
repository

Keep an
updated list of
data models to
show to the
user

Alpha
Has access to
the data
models

Done PISTIS.
OUS.0
6

UC_03 Data provider
Transform my
datasets to a data
model

The datasets
follow a
domain
specific
standard

Alpha
Has access to
the files

Done PISTIS.
OUS.0
6

UC_04 Data provider

Store the
transformed dataset
in the Factory Data
Storage

The
transformed
dataset is
available in the
PISTIS platform

Alpha

The format is
supported by
the Factory
Data Storage

Done PISTIS.
OUS.0
1

2.5.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related

Use
Cases

Comments

FR_01 The Data Enrichment component can access a file that the user
has uploaded

US_01

FR_02 The Data Enrichment component gives the user access to domain
specific data models to transform their dataset to.

US_02

FR_03 The Data Enrichment component allows the user to assign a data
model present in the PISTIS Data Models repository to a dataset

US_03

FR_04 The Data Enrichment component allows the user to save the
transformed dataset into the Factory Data Storage

US_04

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 35 of 114

2.5.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The Data Enrichment component will allow the user to fetch files, assign
a data model and save the new dataset without causing any delays

Compatibility NFR2
The Data Enrichment component can be integrated with the Factory Data
Storage, Factory Data Catalogue and PISTIS Data Models Repository

Reliability NFR3
The Data Enrichment component will allow user the access to the latest
available data models in the PISTIS Data Models Repository

Reliability NFR4
All endpoints of the Data Enrichment component are always functional
and proper error messages are provided when a request fails.

Security
NFR5 The Data Enrichment component will be secured with the Identity and

Authorization Manager and Access Policies Manager

Portability
NFR6 The Data Enrichment component is containerized and can be deployed in

hardware that supports Docker

2.5.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

Figure 15: Data Enrichment Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 36 of 114

2.5.7 MOCK-UPS AND SCREENSHOTS

Figure 16: Display the dataset

Figure 17: Select the properties of the data model

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 37 of 114

2.6 DATA QUALITY ASSESSMENT

2.6.1 COMPONENT DESCRIPTION
The Data & Metadata Quality Assessment component ensures the quality and consistency of

data and metadata within the PISTIS system.

It provides two main functionalities:

• Metadata Assessment: This module checks and validates metadata against the

predefined Metadata model and returns the validation result together with a score of

the result. It identifies missing metadata, validates data types and formats, and

ensures adherence to data standards.

• Data Assessment: This module checks and validates structured data against

information provided in the metadata and returns the validation result together with

a score of the result. It checks for data consistency, adherence to data quality rules,

and identifies potential errors or anomalies. The validation process ensures that data

is reliable, accurate, and usable for downstream applications. For this purpose, it uses

the great expectations python library.

The Data & Metadata Quality Assessment component provides APIs for both metadata and

data validation, allowing integration with various data management and processing tools. It

also supports on-demand and scheduled validation runs, enabling proactive data quality

monitoring. User-defined validation rules can be incorporated to address specific data quality

requirements.

2.6.2 TECHNOLOGY BACKGROUND
• The metadata assessment functionalities will be based on Fraunhofer FOKUS’ piveau

metrics and uses the piveau pipe for job management. The triple store of the data

catalog is used to store the result as linked data, a MongoDB is used for aggregating

and caching the result to display it.

• The data quality assessment uses Great Expectations as a framework to define and

validate data expectations. It allows for the creation of data pipelines and automated

tests to ensure data quality and integrity.

2.6.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 Data Consumer
Check the Quality of
a particular Data

I can be sure
before buying
a data

Beta

Generate QA
report as
DQV for data

In
Progre
ss

PISTIS.
OUS.0
4

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 38 of 114

UC_02 Data Consumer

Check the Quality of
a particular
Metadata with a
general schema

I can be sure
before buying
a data

Alpha

Generate QA
report as
DQV for
metadata

Done PISTIS.
OUS.0
4

UC_03 Data Provider
Automatically check
the quality of the
Data I provide

I know the
quality of my
data and can
get the
expected value

Beta

Generate QA
report as
DQV for data

In
progre
ss

PISTIS.
OUS.0
4

UC_04
Data Provider

Automatically check
the quality of the
Metadata I provide

I can be sure
Data
Consumers can
find my data

Alpha

Generate QA
report as
DQV for
metadata

Done PISTIS.
OUS.0
4

UC_05 Data Provider
Represent the best
possible quality of
my data

I can archieve a
higher
valuation

Beta
Display QA
report for
data

Upcom
ing

PISTIS.
OUS.0
4

UC_06 Data Consumer

Check the Quality of
a particular
Metadata with a
PISTIS metadata
schema

I can be sure
before buying
a data

Beta

Generate QA
report as
DQV for
metadata
using PISTIS
schema

Upcom
ing

PISTIS.
OUS.0
4

2.6.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 The DQA should provide the ability to automatically check
the Quality of the Metadata

US_04, US_06

FR_02 The DQA should provide the ability to check the Quality of
the Data after the user defined the structure of it

US_05, US_03

FR_03 The DQA should provide the ability to make the
assessment results available to interested users

US_01, US_02

2.6.5 NON-FUNCTIONAL REQUIREMENTS
The non-functional requirements to the component are not identified yet.

2.6.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
Brief description of internal component’s elements and the architecture of the component

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 39 of 114

2.6.6.1 Metadata Quality Assessment

Figure 18: Metadata Quality Assessment service internal architecture

The MQA consists of three main layers, the pipeline layer, the services layer and the UI layer.

The pipeline layer is called during Data Check-In and consists of several microservices to assess

the metadata quality and calculate the score. This result will then be stored as linked data in

the data factories linked data storage.

The UI layer is integrated into the data catalogue, so that it is possible to see the quality of

each dataset in the catalogue. To show this data it will talk to the services layer, which will

provide a cached version of the result for a more performant access.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 40 of 114

2.6.6.2 Data Quality assessment

Figure 19: Data Quality Assessment service internal architecture

The DQA service will have a similar structure to the MQA. It will also have a pipeline layer to

calculate the quality of the data after Data Check-In. This will utilize the open-source data

quality platform great expectations.

The result will also be integrated into the data catalogue for easier access.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 41 of 114

2.6.7 MOCK-UPS AND SCREENSHOTS

Figure 20: Overview of the assessment result with the score "bad"

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 42 of 114

Figure 21: Dive in into the result for the metrics of the dimension reusability

Figure 22: Historic results for the dimension reusability

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 43 of 114

2.7 DATA INSIGHTS GENERATOR

2.7.1 COMPONENT DESCRIPTION
The Data Insights generator is a component that provides information about the structure and

data types of a given dataset in order to ease the understanding of a dataset for the final user.

The component is expected to receive a given dataset and map it to a python pandas

DataFrame. From that input dataset, a report on the different fields of the dataset is expected

to be provided, including some information such as the data type of each field, number of

missing elements, different values in categorial values, some statistical analytics on numerical

data, etc.

2.7.2 TECHNOLOGY BACKGROUND
The insight generation component relies on python libraries for data validation (by means of

a widely used python library for data manipulation such as pandas) and for the insight

generation report creation.

2.7.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 Data Provider
Get insight from my
dataset

Get an insight
information
from a dataset

Alpha

Insight data
generated
with the
initial set of
insights

Done PISTIS.
OUS.0
3

UC_02 Data Provider
Get an improved set
of insights from my
dataset

Get an
extended
insight
information
from a dataset

Beta

Insight report
generated
with an
extended set
of insights

Upcom
ing

PISTIS.
OUS.0
3

UC_03 Data Provider
Get the final set of
insights from my
dataset

Get the final
set of insights
from a dataset

1.0

Insight report
generated
with the final
set of
insights

Upcom
ing

PISTIS.
OUS.0
3

2.7.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 The component has to
extract/generate some information
describing the data (metadata) by
analysing the data

UC_01, UC_02,
UC_03, UC_04

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 44 of 114

2.7.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Compatibility NFR1
The component has to be able to analyse data in CSV format (Pandas
DataFrame compliant)

Security NFR2 PISTIS ensures that only authorised user can get the insights. 

2.7.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

Figure 23: Component’s Internal Architecture

The component consists of a tool that when getting an input dataset via API, returns a JSON

with some insights of that input dataset. This API module has been built using Flask, while the

logic behind the insight generation itself relies on the ydata profiling library.

2.7.7 MOCK-UPS AND SCREENSHOTS
Due to the nature of the Insight Generator component it doesn’t have a GUI.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 45 of 114

3 DATA & METADATA STORAGE BUNDLE

The Data & Metadata Storage bundle is delivering a catalogue for the data that are made

available by each organisation in their own PISTIS Data Factory environment. Moreover, it also

concerns those made available as “published” datasets over the whole ecosystem, alongside

with the appropriate data storage facilities to hold the data.

This bundle consists of the following components:

• Data Catalogues

• Factory Data Storage

These are presented in the following sub-sections.

3.1 DATA CATALOGUES

3.1.1 COMPONENT DESCRIPTION
Under “data catalogues” we refer to the components that offer catalogue features for the

data in PISTIS. They constitute the essential components to manage the offerings of data

assets and are the following:

• Factory Data Catalogue

• PISTIS Data Catalogue

The Factory Data Catalogue runs within the premises of the data provider and serves as the

access point to the organisation's data assets. It provides the means to make the metadata

and data available. Each organisation is responsible for maintaining its own catalogue and

incorporating their own (meta)data.

The PISTIS Data Catalogue is a centralized service within the PISTIS Cloud Platform and

aggregates the metadata from all Factory Data Catalogues. It constitutes the central

marketplace of PISTIS by allowing to browse all available data assets offered for sharing by the

data providers. The visibility of the data assets is determined by the respective data access

policies.

The Factory Data Catalogues and the PISTIS Data Catalogue will be connected via the Asset

Description Bundler, that is responsible for making data from the factories available for

acquisiton in the PISTIS Cloud Platform, through publishing the relevant metadata only. As

such, the data remain with the data providers until a transaction is performed

3.1.2 TECHNOLOGY BACKGROUND
The Data Catalogue will be based on the scalable, Open Source and Java-based metadata

management solution piveau4. Piveau is catalogue solution, designed around Semantic Web

technologies and applies a Triplestore as its primary database to leverage the full potential of

4 https://doc.piveau.io

https://doc.piveau.io/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 46 of 114

Linked Data. That allows to store metadata, data and data models in native RDF (Resource

Description Format) without any restrictions. Especially, the integration of external existing

data via the principles of Linked Data is covered by the solution. It closes the gap between

formal Linked Data metadata specifications and their actual application in production. The

base data model is DCAT, but it can be extended to support any possible data model via

providing suitable Shapes Constraint Language (SHACL) files. Piveau is designed to harmonize

metadata from various sources into a single harmonized knowledge graph by applying a

common URI schema to all incoming data.

On top a high-performance search service is integrated based on Elasticsearch, allowing to

perform search and filter operations on the data. Furthermore, piveau comes with a user-

friendly user interface for browsing and creating metadata, which is developed with Vue.js.

piveau is already prepared to be integrated with Keycloak for access control and can be

deployed out-of-the-box on cloud infrastructures, like Kubernetes.

3.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>, so that <Reason>

UC_01
Data
Provider

Provide metadata
for my data

I can increase my
data quality

Alpha

CRUD
operations
can be done
to the
selected
metadata

Done
(delivered in
alpha)

PISTIS.O
US.01

UC_02
Data
Consumer

Find the data I need
by searching in the
metadata using
keywords and filters

I can reach my
goal

Alpha

Search
function
returns the
most
relevant
datasets

Done
(delivered in
alpha)

PISTIS.O
US.09

UC_03
Data
Consumer

See what is
available

I can brainstorm
new ideas or
make a reliable
prototype

Alpha
All datasets
are listed

Done
(delivered in
alpha)

PISTIS.O
US.09

UC_04
Data
Provider

Configure custom
data schema for my
data

I can customise
my data schema
according to my
requirement

Beta

If needed,
having a
customised
data
schema is
possible

In Progress PISTIS.O
US.01

UC_05
Data
Provider

See what other
Data Providers offer

I know the
competition/
market, if I want
to make money
by selling data

v1.00

Data from
all providers
are listed in
the PISTIS
Data
Catalogue

Upcoming PISTIS.O
US.09

UC_06
Data
Consumer

Get/buy the data I
need

I can start
working on my
goal

v1.00

The
required
information
to get/buy a

Upcoming PISTIS.O
US.10

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 47 of 114

data is
presented

3.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 Create, read, update, delete
(meta)data

US_01, US_04,
US_06

FR_02 Search metadata and filter the result US_02, US_03,
US_05

FR_03 Harvest/import existing metadata
from another source

US_01

3.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The Data Catalogue complies with all specified functional requirements.

Performance
efficiency

NFR2
The Data Catalogue is capable in handling a high volume of metadata
CRUD operations while maintaining its stability and performance.

Compatibility NFR3

The Data Catalogue features a REST API service, which has become the
standard for software services integration. This means it is compatible
with all other components capable of sending REST API requests and
processing the received responses.

Usability NFR4
Accompanied by detailed API documentation, it allows users to quickly
understand all available endpoints. When a request fails, an error
message is automatically generated to help the users to solve the issues.

Reliability NFR5
The Data Catalogue consistently gives responses that accurately
correspond to the given requests.

Security
NFR6 An authentication procedure can be configured in the Data Catalogue to

enable the catalogue owner to grant access only to authorized users.

Portability
NFR7 The Data Catalogue supports containerisation. When needed, it can be

deployed using container technologies like Docker and orchestrated with
systems like Kubernetes.

3.1.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
Both the Factory and PISTIS Data Catalogues are based on Piveau, an open-source, Java-based

data management solution. The data management solution is represented by piveau-hub in

Figure 24, with its internal components is detailed further in the Factory Data Catalogue

component section.

The Data Catalogue (piveau-hub) primarily consist of two main services: the repository service,

which manages RDF metadata in accordance with the DCAT-AP standards, and the search

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 48 of 114

service, which allows users to efficiently find the metadata they need. When a metadata is

added, it is initially processed by the repository service and stored in a Triplestore database,

Virtuoso. After that, the repository service converts the metadata into JSON format and

transfers it to the search service, enabling it to be indexed, stored, and managed within

Elasticsearch.

The repository and search services each have a dedicated API that can be utilized by any PISTIS

component capable of sending REST API requests and processing the responses.

Consequently, these APIs are essential for facilitating integration with other PISTIS

components. Additionally, a frontend is provided to facilitate user interaction with the Data

Catalogues.

The Factory and PISTIS Data Catalogue are kept in sync through the Asset Description Bundler

component, which operates independently from the core Data Catalogue component and is

not part of the Data Catalogue. Another component that interacts with the Factory Data

Catalogue is the Organisational Metadata and Data Provider and Consumer component.

Meanwhile, the PISTIS Data Catalogue interacts with PISTIS IAM, Data Model Repository, and

PISTIS Cloud Platform Metadata Consumer components (for example, smart Contract

Exevution Engine).

Figure 24: Data Catalogue’s Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 49 of 114

3.1.7 MOCK-UPS AND SCREENSHOTS

Figure 25: A list of datasets with filters on the left-side

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 50 of 114

Figure 26: Presentation of a dataset and its associated metadata

3.2 FACTORY DATA STORAGE

3.2.1 COMPONENT DESCRIPTION
The Factory Data Storage is a component that provides a comprehensive solution with two

relational databases integrated with a RESTful API to provide secure and efficient access to

the data. It is hosted locally by the Data Factory environment which is on the premises of an

organization that is a member of the PISTIS ecosystem. Data from each organization is

ingested into the Data Storage by the Data Check-In module. This component comprises of a

primary database that stores datasets in the form of tables and an additional database to store

datasets in the form of files. Access to these databases is provided through a RESTful API.

The datasets are stored in different ways based on its format. If a dataset is in the form of a

relational table, with a data schema, it is stored as a SQL table in the primary database. Each

table is assigned a unique identifier in the form of a UUID which can be later used to query the

rows and columns of this table. If a dataset is available in the form of a file (for example .csv,

.txt, .xml), they are stored in the secondary database inside a table, also using a UUID. These

files can be later converted into a SQL table and stored in the primary database.

The main functionalities of the Factory Data Storage are:

1. Storage for tables and files in a relational database

2. Access to the database using a REST API

3. CRUD operations on tables

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 51 of 114

4. CRUD operations on files

3.2.2 TECHNOLOGY BACKGROUND
Factory Data Storage comprises of two major modules, the databases to provide storage to

the files and a REST API to provide access to the databases. The database is built using

PostgreSQL which is an open-source object relational database management system, and the

RESTful API is built using Python Flask and SQL Alchemy which is a Python SQL toolkit and

Object Relational Mapper (ORM) that provides the full power and flexibility of SQL. The two

databases are hosted in an instance of the PostgreSQL and seamlessly integrated and provided

access to using the RESTful API.

3.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 Data provider
Store a dataset in
the form of a file

It is made
available in the
PISTIS platform

Alpha

The format
and size of
the file is
supported by
the data
storage

Done PISTIS.
OUS.0
1 ,
PISTIS.
OUS.0
6

UC_02

Data provider

Store a dataset in
the form of a file or
a table

It is made
available in the
PISTIS platform

Alpha

The data
schema is
correctly
defined

Done PISTIS.
OUS.0
1

UC_03

Data provider

Fetch a dataset in
the form of a file

It can be
transformed
into a tabular
dataset with a
domain
specific data
model

Alpha
Has access
rights to the
file

Done PISTIS.
OUS.0
3

UC_04
Data provider

Fetch a dataset in
the form of a table

It can be used
for any of the
other factory
components
for quality
check or data
transformation

Alpha
Has access
rights to the
table

Done PISTIS.
OUS.0
4

UC_05
Data provider

Update a dataset in
the form of a table
or a file

It can be made
available for
further
processing and
quality analysis

Alpha

Has access
rights to the
table

Done PISTIS.
OUS.0
4

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 52 of 114

3.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 The Factory Data Storage stores datasets in the form of SQL
tables and files.

US_01, US_02

FR_02 Datasets in the form of files and tables can be read from the
Factory Data Storage.

US_03, US_04

FR_03 Datasets in the form of files and tables can be updated in
the Factory Data Storage.

US_05

3.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The Factory Data Storage is built respecting all functional requirements.

Performance
efficiency

NFR2
The Factory Data Storage API stores files and tables without causing
delay.

Compatibility NFR3
The Factory Data Storage API can be integrated with other components
of the PISTIS Factory Architecture.

Usability NFR4
All endpoints of the Factory Data Storage adhere to the standards of
OpenAPI and are functional with proper configuration.

Reliability NFR5
All endpoints of the Factory Data Storage are always functional and
proper error messages are provided when a request fails.

Security
NFR6 The Factory Data Storage will be protected with the Identity and

Authorization Manager and access policies.

Portability
NFR7 The Factory Data Storage is containerized and can run on any hardware

that supports docker.

3.2.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The Factory Data Storage is built using a Python Flask app, SQLAlchemy, and PostgreSQL to

meet PISTIS’s factory storage functionalities. The Flask framework provides the infrastructure

for handling HTTP requests and defining endpoints, facilitating communication between the

clients, backend and the database. It builds endpoints to create, read, update, and delete data

with ease. In PISTIS, two types of data are being handled using the storage, data in the form

of structured tables with a specific data schema and data in the form of files. The API of the

Factory Data Storage provides separate POST endpoints to upload files and to create tables.

Along with these POST endpoints, GET, PUT and DELETE endpoints are also built to retrieve,

update and delete data in the database. For data stored as tables, the update operation will

add rows to a table and for data stored as files, the update operation can update the file or

rename a file. The input to these endpoints will vary depending on the type of the request and

the type of the data being handled by the request. For example, files are uploaded using a

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 53 of 114

formdata parameter “File” and tables are created using a JSON body with the datamodel, data

and any metadata such as the name of the table.

Inputs provided to every API endpoint is transferred into an SQL query or a python object and

is used to interact with the PostgreSQL database using SQLAlchemy. SQLAlchemy's Object-

Relational Mapping (ORM) capabilities allow interaction with the relational database using

Python objects along with raw SQL queries. Relational tables with fixed data schema can be

created by defining them as a Python object, and if the schema is not known, then native SQL

queries are created and ran on the database using the SQLALchemy engine.

PostgreSQL is the chosen relational database, which is a reliable and scalable database

management system that stores and manages data with high efficiency. Data inserted into the

PISTIS factory through the Data Check-in process are separated based on their format and is

stored in either of the two databases for tables or files. The database for tables holds SQL

tables that may vary in data schema and data and the database for files have tables with fixed

schema that stores the file, the name of the file and the UUID of the file. Every dataset stored

in the database has a UUID assigned to it, this UUID is the unique identifier of the table and is

used to perform GET, UPDATE and DELETE operations on this dataset.

Figure 27: Factory Data Storage Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 54 of 114

3.2.7 MOCK-UPS AND SCREENSHOTS
This is a backend service, and has no UI

4 DATA DISCOVERY BUNDLE

The Data Discovery bundle provides services for searching and discovering the available data

assets that might be of interest for a Data Consumer.

This bundle consists of the following components:

• Distributed Query Engine

• Matchmaking Services

Distributed Query Engine is presented in the following sub-sections. Matchmaking Services

are presented in D3.2.

4.1 DISTRIBUTED QUERY ENGINE

4.1.1 COMPONENT DESCRIPTION
The main purpose of this component is to query directly the unstructured or semi-structured

data to discover datasets that cannot be retrieved by querying their metadata on the

Distributed Data Catalogue.

However, the volume of the data stored in the Data Factories does not allow extensive search

approaches to be used. Therefore, Locality Sensitive Hashing techniques will be employed to

quickly obtain a list of matches. Subsequently, the list of potential matches yielded by the LSH

methods will be further evaluated and combined with those returned by the Distributed Data

Catalogue.

Finally, the merged list will be cross-checked with the Policy Engine that will be part of the

Keycloack to decide if the users have access rights to the results. Subsequently, this list will be

fed to a pretrained ML-model that will re-rank it in order to give prominence to the most

relevant matches.

4.1.2 TECHNOLOGY BACKGROUND
The following main technologies are employed for developing the Distributed Query Engine:

• The Redis NoSQL database is used for storing and retrieving the hashed generated by

the LSH component of the Distributed Query Engine

• Python’s Flask microframework has been employed for creating all the web APIs

exposed by Distributed Query Engine’s services to the rest of the PISTIS components

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 55 of 114

• For developing the ML part of the ReRanker various Python libraries have been used.

Some of the most notable among them are: numpy, scikit-lean, tensorflow, pytorch

etc.

4.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 User
To search for
dataset

I can discover
datasets based
on stored data

Alpha

The user can
perform
queries using
an API

Done PISTIS.
OUS.9

UC_02
Distributed
Query backend

Create forwarding
service

To forward the
metadata
queries to the
Data Catalogue

Alpha

Metadata
queries are
automatically
sent to the
Data
Catalogue

Done PISTIS.
OUS.9

UC_03 LSH
Create an LSH
service

Datasets are
indexed for
enabling quick
NN queries

Alpha

Datasets can
be indexed
and retrieved
by making
API calls

Done PISTIS.
OUS.9

UC_04 ReRanker
Create
Merger/ReRanker

The results
returned by
the Data
Catalogue and
the LSH service
are unified

Alpha

A unified list
of results
that match
both types of
searching is
returned

Done PISTIS.
OUS.9

UC_05 ReRanker
Create ReRanking
training service

To fit a model
that will help
predict a more
accurate
ranking of the
results

Beta

The list of
US_4 is
sorted based
on relevance

In
Progr.

PISTIS.
OUS.9

UC_06 User
To search for
dataset using GUI

I can discover
datasets based
on stored data
in a user
friendly
manner

Beta

The user can
perform
queries and
browse
results using
a GUI

In
Progr.

PISTIS.
OUS.9

4.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related

Use Cases
Comments

FR_01 The users of the PISTIS platform must be able to search for
datasets based on their contents

US_01,
US_03,
US_06

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 56 of 114

FR_02 The component should support queries with text or binary data US_03

FR_03 The component should support queries over streaming data US_03

FR_04 The PISTIS platform will have a unified UI for searching datasets
based both on data and metadata (see PISTIS Data Catalogue)

US_01,
US_02,
US_03,
US_04,
US_05,
US_06

FR_05 Filter out those results that the user does not have read access
for

US_01

4.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The overall process shall be performed without delays and should
not consume unnecessary system resources

Reliability NFR2

The Distributed Query Engine shall operate in a reliable manner,
checking efficiently the connection status of the PISTIS Data
Factories in the network

Security
NFR3 The overall process shall be made through secure communication

channels

Usability NFR4 The GUI for searching datasets shall be intuitive and user-friendly

4.1.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The Distributed Query Engine is divided into three major subcomponents: the Distributed

Query Service, the Locality Sensitive Hasing component and the ReRanker. At its heart lies the

Distributed Query Service which orchestrates the various tasks that need to be executed. First,

it receives the search requests performed by the end users and forwards them to the LSH

components that run on every Data Factory. When the subsequent searches are finished, it

gathers all the results in the form of lists of datasets’ UUIDs and communicates with the IAM

component to check whether the users have the appropriate access rights over them. Then it

retrieves the datasets’ details and metadata from the Data Catalogue. Finally, before these

results are returned to the end users, they are sorted by the ReRanker component. As it has

already been mentioned, the LSH component is present on every Data Factory and is charged

with indexing the datasets that are stored in the Factory’s Data Storage. It comprises of four

modules: the Index Creator that generates the hashes that describe a dataset and is triggered

whenever a dataser is inserted/updated, the Hashes Storage where the aforementioned

hashes are persisted, the Query Executor that is charged with retrieving the most relevant

datasets given some query data and a Controller that manages all the above and exposes an

API to the rest of the PISTIS components. The last subcomponent of the Distributed Query

Engine is the ReRanker which performs the task of merging and re-arranging the various lists

of results. To achieve this, it has two modules that employ ML techniques: the first one is for

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 57 of 114

training a model that will perform the sorting and the second one uses the fitted model to

predict a more accurate ranking of the unified list of results.

Figure 28: Distributed Query Engine Internal Architecture

4.1.7 MOCK-UPS AND SCREENSHOTS

Figure 29: Mock-up for searching datasets using the GUI

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 58 of 114

Figure 30: Screenshot for searching datasets using the GUI (under development)

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 59 of 114

5 DATA EXCHANGE BUNDLE

The Data Exchange bundle facilitates the peer-to-peer exchange of the data assets between a

Data Provider and a Data Consumer, adhering to the terms of the contract that has been

signed to govern the overall transaction.

This bundle consists of the following components:

• PISTIS Data Factory Connector

• Smart Contract Checker

These are presented in the following sub-sections.

5.1 PISTIS DATA FACTORY CONNECTOR

5.1.1 COMPONENT DESCRIPTION
The transfer of data between different PISTIS actors that belong to different organisations

(e.g. Data Providers and Data Consumers) is the logical termination point of a monetary or

otherwise exchange agreement flow, where following the establishment of an electronic

contract, the dataset that is part of the agreement must reach the Data Consumer.

The overall transfer in PISTIS is facilitated by the PISTIS Data Factory Connector (or else, the

PISTIS Connector), which is an infrastructure that is tasked, once a data transfer contract

needs to be executed, to fetch the data stored in the PISTIS Data Factory of the Data Provider

and pass it to the PISTIS Data Factory of the Data Consumer.

This transfer is to be performed following the appropriate checks at smart contract level that

will govern such exchanges (based on licence, usage and permission attributes stored in the

ledger), and the result will be the deposition of the data asset purchased by the Data

Consumer in his own, local data storage.

5.1.2 TECHNOLOGY BACKGROUND
The main technology used for the Component is Node.JS (based on the Nest Framework) as

the whole component is a backend service that is deployed at the side of each PISTIS Data

Factory and can ingest and provide data to other deployments as instructed by the smart

contracts.

5.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role> I want to <Action>,
so that
<Reason>

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 60 of 114

UC_01 Data Consumer

Have a data asset
I’ve already bought,
automatically
transferred to my
Data Factory

I can use the
dataset on my
side

Alpha

The data
asset bought
is in the Data
Consumer
Storage

Done

PISTIS.
OUS.1

2

UC_02 Data Consumer

Have a dataset to
which I paid a
subscription to
automatically be
updated in my Data
Factory

I can use the
dataset on my
side

Beta

The data
asset bought
is in the Data
Consumer
Storage

Upcom
ing

PISTIS.
OUS.1

2

UC_03 Data Consumer

Have a slice of the
dataset I bought
automatically
transferred to my
Data Factory

I can use the
dataset on my
side

V1.00

The data
asset bought
is in the Data
Consumer
Storage

Upcom
ing

PISTIS.
OUS.1

2

UC_04 Data Provider
Log all data transfers
I made to Buyers in
the blockchain

There is
evidence and
information
about those

Alpha
The Ledger
contains data
transfer logs

Done

PISTIS.
OUS.1

2

UC_05 Data Consumer
Get notified once a
transfer has finished

I can use the
dataset on my
side

V1.00

Notifications
of executed
transfers are
shown to
Data
Consumer

Upcom
ing

PISTIS.
OUS.1

2

UC_06 Data Consumer

Get notified once a
transfer has failed
and be provided
with an error code

I can contact
PISTIS to get
support

V1.00

Notifications
of failures
are shown to
Data
Consumer

Upcom
ing

PISTIS.
OUS.1

2

UC_07 Data Provider
Get notified once a
transfer has finished

I know the
Data Consumer
got his
purchase

V1.00

Notifications
of executed
transfers are
shown to
Data
Provider

Upcom
ing

PISTIS.
OUS.1

2

UC_08 Data Provider

Get notified once a
transfer has failed
and be provided
with an error code

I can contact
PISTIS to get
support

V1.00

Notifications
of failures
are shown to
Data
Provider

Upcom
ing

PISTIS.
OUS.1

2

5.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description Related Use Cases Comments

FR_01

The PISTIS Data Factory Connector

shall transfer the acquired data asset

(either static or streaming data) from

the PISTIS Data Factory of the Data

Provider to that of the Data

Consumer

UC_01, UC_02,

UC_03, UC_04
N/A

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 61 of 114

FR_02

The PISTIS Data Factory Connector

shall execute data transfers

automatically based on the terms of

the smart contract

UC_01, UC_02,

UC_03, UC_04
N/A

FR_03

The PISTIS Data Factory Connector

shall provide notifications relevant to

the outcome of data transfers

UC_05, UC_06,

UC_07, UC_08
N/A

5.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The overall transaction shall be performed without delays and should not
consume unnecessary system resources

Reliability NFR2
The PISTIS Data Factory Connector shall operate in a reliable manner,
transferring the whole of the data asset that is described in the smart
contract and being capable of high resilience

Reliability NFR3 The PISTIS Data Factory Connector shall provide notifications to the users

Security
NFR4 The overall data transfer shall be made through secure communication

channels

5.1.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The main elements comprising the PISTIS Data Factory Connector are:

- The Smart Contract checker which is used to retrieve and analyse the details present

in the smart contract to resolve how the system shall proceed with the transfer

- The Transfer Gateway Registry that is used to store transaction related data locally in order

to support certain operations (such as transferring data in batches, etc)

- The Data Factory Storage I/O Service that is retrieving the data stored in the local

storage of a PISTIS Data Factory to transfer it. The same component also writes back

to the PISTIS Data Factory of the Data Consumer, once he has acquired the data asset

- The Metadata Repository I/O Service that is retrieving the assets’s metadata stored in

the PISTIS Data Factory Storage to transfer it. The same component also writes back

the asset’s metadata to the Metadata Repository of the Data Consumer, once he has

acquired the data asset

- The Request / Data Reception Service that is used to request a specific dataset (based

on an active smart contract) and is also receiving the relevant information (and data

asset)

- The Data Publishing Service that is used to bundle the data and the metadata of an

asset and send it to the Request / Data Reception Service of the PISTIS Data Factory

Connector component that resides at the side of the Data Consumer

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 62 of 114

Figure 31: PISTIS Factory Connector’s Internal Architecture

5.1.7 MOCK-UPS AND SCREENSHOTS
N/A - This is a backend service and GUI is not available.

5.2 SMART CONTRACT CHECKER

5.2.1 COMPONENT DESCRIPTION
The Smart Contract Checker within the PISTIS platform is a component designed to ensure the

integrity and validity of transactions on the network. Smart Contract Checker’s checking policy

is based on two pillars that collectively uphold the security, authenticity, and compliance of

operations on the platform:

• Checking the authenticity of transactions: They originate from a valid, authenticated,

and registered member of the PISTIS Platform. In other words, there is a need to check

if the smart contract operations are valid and performed by an authorized user by

checking all the signatures. Two checks will be performed: the first one is if the user

has valid verifiable credentials (stored in the wallet), and the second one is if the user

is a valid and authenticated member of the PISTIS platform.

• Ensuring there is no violation in future data transactions: This is done in the context of

functional logic. For instance, by checking the common privacy protection profile and

the exposed sensitive columns or the existing balance of money prior to data trading.

The Smart Contract Checker serves both the organizations and the PISTIS framework.

The Smart Contract Checker will be implemented as a rule-based engine that will be filled with

a sample of fixed rules for the Alpha version. During the demonstrators implementation, and

based on the outputs of the tasks that are developing the legal terms that should accompany

the contracts, these rules will be updated, while at the end of the project the component will

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 63 of 114

be able to accommodate any other rules deemed necessary by the operators of the PISTIS

ecosystem.

5.2.2 TECHNOLOGY BACKGROUND
The Smart Contract Checker component utilizes modern web technologies to provide

compliance solutions in order to filter the provided Smart Contract under a set of rules. At its

core, the system is developed using Node.js and the application logic and compliance rules

are implemented in TypeScript.

For its interfacing with other components and external clients, the Smart Contract Checker

exposes RESTful APIs. These APIs allow for a standardized way of communicating with other

parts of the system, facilitating requests for data validation, retrieval of compliance reports,

and submission of privacy policies for analysis.

5.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

US_01
Data
Provider

check the data
before sharing
them (with
UBITECH’s rules)

I can be sure
everything is
in the
correct form

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_02
Data
Consumer

each data trade I
perform to be
checked (with
UBITECH’s rules)

I can be sure
of the data
validity and
correctness

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_03

Data
Provider,
Data
Administrat
or

be sure that
before data
sharing the
necessary
amount of
money have
transferred
successfully

I can be sure
that the
Data
Consumer
and paid for
them

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_04

Data
Provider,
Data
Consumer

be sure that
before data
sharing that data
are GDPR
compliant

I can be sure
that no legal
issues will
be arise

Alpha

smart
contract
check
functionali
ty

Done PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_05 Data be sure that I can be sure Alpha smart Done PISTIS

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 64 of 114

Provider,
Data
Consumer

before data
sharing that do
not violate and
policy (with
UBITECH’s rules)

that no
issues will
be arise

contract
check
functionali
ty

.OUS.
10,
PISTIS
.OUS.
11

US_06
Data
Provider

check the data
before sharing
them (with
official rules)

I can be sure
everything is
in the
correct form

Beta

smart
contract
check
functionali
ty

In
Progr
ess

PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_07
Data
Consumer

each data trade I
perform to be
checked (with
official rules)

I can be sure
of the data
validity and
correctness

Beta

smart
contract
check
functionali
ty

In
Progr
ess

PISTIS
.OUS.
10,
PISTIS
.OUS.
11

US_08

Data
Provider,
Data
Consumer

be sure that
before data
sharing that do
not violate and
policy (with
official rules)

I can be sure
that no
issues will
be arise

Beta

smart
contract
check
functionali
ty

In
Progr
ess

PISTIS
.OUS.
10,
PISTIS
.OUS.
11

5.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 Smart Contract Checker supports
checking potential violations of a
smart contract.

UC_1, UC_2,
UC_3, UC_4, UC_5

These could be on
the GDPR
compliance, on the
smart contract
business logic, on the
monetary values
needed for the
transaction etc.

FR_02 Smart Contract Checker supports
triggering GDPR check component.

UC_4, UC_5 One of the supported
violation checks is
done by triggering
the GDPR check
component.

5.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 65 of 114

Performance
efficiency

NFR1
Smart Contract check should be performed in efficient way.

Reliability NFR2 Smart Contract check result should be a reliable report.

Security NFR3 Only authorised components can trigger smart contract checks.

5.2.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The Smart Contract Checker tool is designed to validate the integrity and compliance of smart

contracts through a two-step analysis process. It begins with the 'Authenticity Check' module

that verifies the originality and correctness of the contract code against predefined standards.

Following this, the 'Violations Check' module scans for any breaches of contractual or

regulatory rules embedded within the contract logic. The results from these modules are

compiled into the 'Smart Contract Checker Result', which details the status of the contract in

terms of both authenticity and legal compliance. This systematic approach helps ensure that

smart contracts are both genuine and adhere to all applicable laws and regulations.

Figure 32: Smart Contract Checker High Level Architecture

5.2.7 MOCK-UPS AND SCREENSHOTS
This is a backend component, and therefore no UI is available.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 66 of 114

6 AI & INTEROPERABILITY REPOSITORIES BUNDLE

The AI & Interoperability Repos bundle provides the different repositories for storing and

propagating different models (data models, AI models and metadata models) that need to be

consumed by the different components.

This bundle consists of the following components:

• PISTIS Models Repository

• Data Factory ML Models Repository

• AI Model Editor

These are presented in the following sub-sections.

6.1 PISTIS MODELS REPOSITORY

6.1.1 COMPONENT DESCRIPTION
The PISTIS Models Repository is responsible for the storage, management, and governance of

all models that are to be used by the different PISTIS components

These models include:

• Data models that define entities, attributes, and relationships within a specific domain.

Data providers must use the data models when describing their actual data and a browser

for these models will be available.

• Metadata models that define the metadata that shall be provided to accompany each

dataset traded over PISTIS. This repository is s based on the RDF standard and established

sub-standards, such as DCAT and Gaia-X self-descriptions. The Data Catalogue component

reads the metadata models during its start-up process to configure itselves accordingly.

Additionally, the Metadata Model Management ensures the automatic generation of a

machine-and-human-readable documentation.

• Monetisation AI models, which are used by the analytics engine residing in the Cloud

platform to accommodate the needs of the PISTIS Market Insights component.

The PISTIS Models Repository also supports version control for the PISTIS models, allowing

users to track changes over time, which is crucial for managing updates and ensuring

consistency across the whole PISTIS ecosystem. It also maintains metadata associated with

each data model, providing information about its version, size, and creation/last update date.

Users can search and retrieve specific data models based on various criteria, facilitating easy

access to relevant information.

The PISTIS Platform administrator is the role that maintains the models and can upload new

artefacts and fill-in new metadata information on the existing ones, as well as to remove

specific models.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 67 of 114

6.1.2 TECHNOLOGY BACKGROUND
The PISTIS Models Repository will offer a frontend service, developed in Nuxt.js and Vue.js,

delivering the UI where the PISTIS data model Administrator will be able to generate, upload

edit and manage the PISTIS data models.

For the backend services of this component and regarding the data, and the Monetisation AI

models, Nest.js will be exploited, while intra-component communication will be facilitated

with Rest APIs.

For the Metadata Model repository, the technology stack to be used includes SHACL, OWL,

SKOS, DCAT-AP for Data Spaces, as well as Custom SHACL Extensions

6.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01
PISTIS Platform
administrator

view all the content
available in the
PISTIS models repo

I am aware of
the available
models and
artefacts

Alpha

Display all
contents
(models,

artifacts) of
the repo

Done

PISTIS.
SOUS.

02

UC_02
PISTIS Platform
administrator

upload an artefact in
the repo

it can become
available to the
other
components

Alpha

Uploaded
artefact

visible in the
PISTIS

Repository

Done

PISTIS.
SOUS.

02

UC_03
PISTIS Platform
administrator

edit the description
and metadata of an
artefact in the repo

other viewers
can
understand
more about it.

Alpha

Display new
model

description
and

metadata

Done

PISTIS.
SOUS.

02

UC_04
Data Factory
Component

get a view of the
repositories
contents via API

I can see what
is inside

Alpha

APIs
available

Done

PISTIS.
SOUS.

02

UC_05
Data Factory
Component

be able to get a
specific model

I can use it
internally

Alpha

Model File
downloaded/

saved

Done

PISTIS.
SOUS.

02

UC_06
PISTIS Platform
administrator

add a new version of
a model

I keep version

Alpha

New version
of the model

added

Done

PISTIS.
SOUS.

02

UC_07
PISTIS Platform
administrator

select an artefact of
the repo

I can download
it

Beta

artefact
downloaded/

saved

Upcom

ing

PISTIS.
SOUS.

02

UC_08
PISTIS Platform
administrator

select multiple
artefacts of the repo

I can download
them

Beta

Selected
artefact

downloaded/
saved

Upcom
ing

PISTIS.
SOUS.

02

UC_09
PISTIS Platform
administrator

select an artefact of
the repo

I can delete it Beta
Selected
artefact
deleted

Upcom
ing

PISTIS.
SOUS.

02

UC_10
PISTIS Platform
administrator

select multiple
artefacts of the repo

I can delete
them

Beta
Selected
artefacts
deleted

Upcom
ing

PISTIS.
SOUS.

02

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 68 of 114

UC_11
PISTIS Platform
administrator

Remove selected
artefacts of the repo

They are no
longer part of
the repository

Beta
Selected
artefacts
deleted

Upcom
ing

PISTIS.
SOUS.

02

6.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description Related Use Cases Comments

FR_01 The PISTIS Models Repository shall provide a user-
friendly interface allowing the Platform
administrator to view/edit/delete/manage the PISTIS
data models

US_01, US_02,
US_03, US_07,
US_08, US_09,
US_10, US_11

FR_02 The PISTIS Models Repository shall enable the model
Administrator to create a new model and populate it
along with its metadata

US_02, US_03

FR_03 The PISTIS Models Repository shall enable the
Platform administrator to edit the metadata of an
existing model

US_03

FR_03 The PISTIS Models Repository shall enable the
Platform administrator to upload a new version of an
existing model

US_06

6.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
The overall process shall be performed without delays and should not
consume unnecessary system resources

Reliability NFR2
The component shall operate in a reliable manner, providing reliable
information to the PISTIS Model Manager

Security
NFR3 The overall process shall be made through secure communication

channels

6.1.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The PISTIS Models Repository consists of the following components:

• Frontend Repository Management Service: The user interface (dashboard) that enables users
(Platform Administrators) to take actions, related to upload new data artefact, edit the existing
models, etc.

• PISTIS Model Manager Backend: This component executes the user’s actions (upload, edit,
delete), communicating with the Global Model Storage towards retrieving and/or updating the
available models, uploading new ones, etc.

• Data Models Repository: Refers to the actual storage facility where the models (as files) are
residing

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 69 of 114

• Repository Exposure API: The API gateway used by the other component to read the models
that are stored in the repository

Figure 33: PISTIS Model Repository Internal Architecture

6.1.7 MOCK-UPS AND SCREENSHOTS

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 70 of 114

Figure 34: PISTIS Models Repository – Models Management

Figure 35: PISTIS Models Repository – Upload of New Artefact

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 71 of 114

6.2 DATA FACTORY ML MODELS REPOSITORY

6.2.1 COMPONENT DESCRIPTION

The Data Factory ML Models repository will provide support for CRUD and serving operations

over a concrete pre-trained model.

This repository is essentially a similar deployment of the PISTIS Models Repository, but

concerns only ML models which can be uploaded by Data Factory users to run analyses over

their own data, while they can also fetch already Pre-trained ML models from the PISTIS

Models Repository

6.2.2 TECHNOLOGY BACKGROUND
The main technology used for the Component is MinIO integrated with MLFLow.

6.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role> I want to <Action>, so that <Reason>

UC_01 User Add a Model Add a Model Alpha Model added

Upcom
ing

PISTIS.
OUS.0

3

UC_02 User

Fetch a Model from

the PISTIS Models

Repository

Keep Model
updated

Beta
Model
descriptions
updated

Upcom
ing

PISTIS.
OUS.0

3

UC_03 User Serve a Model

Enabling trained
models are
made available
for others to use

Beta
Model
served

Upcom
ing

PISTIS.
OUS.0

3

UC_04 User
Add or Updating
Model Descriptions

Update
descriptions over
the model

Alpha
Model
updated

Upcom
ing

PISTIS.
OUS.0

3

UC_05 User
Edit a Model’s
Metadata

Support new
naming

Alpha
Model
renamed

Upcom
ing

PISTIS.
OUS.0

3

UC_06 User
List and searching
Models

Found Models Alpha
Check
searching

Upcom
ing

PISTIS.
OUS.0

3

UC_07 User Archive a Model Archive Model Alpha
Model
archived

Upcom
ing

PISTIS.
OUS.0

3

UC_08 User Delete Models Delete Models Alpha
Model
deleted

Upcom
ing

PISTIS.
OUS.0

3

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 72 of 114

6.2.4 FUNCTIONAL REQUIREMENTS

This section provides the functional requirements of the ML Model Repository component:

ID Description
Related Use

Cases
Comments

FR_01 Manage storing of Pre-trained AI
Models

UC1, UC2, UC4,
UC5, UC6, UC7,
UC8

FR_02 Serve Pre-trained AI Models UC3

6.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Security NFR1 PISTIS ensures that only authorised user can register datasets.

6.2.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

As it is shown in Figure 36, the architecture of the ML model repository is built mostly on the

use of MinIO as the primary technology for ML model repository. The Rest API merely exposes

a collection of functions related to an ML model's life cycle and, via an internal proxy, connects

to the MinIO backend.

Figure 36: ML Model Repo Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 73 of 114

6.2.7 MOCK-UPS AND SCREENSHOTS

The ML Model Repository's UI will not involve GUI development. The MinIO Console is

intended to be used as a result of the MinIO technology stack being used. Consequently, MinIO

Console will serve as the GUI for our component, assisting with administration tasks such as

Identity and Access Management, Metrics and Log Monitoring, and server configuration. The

MinIO Console is incorporated in the MinIO Server, which is part of the ML Model Repository

component. A screenshot of MinIO Console is shown in Figure 37.

Figure 37: MinIO GUI

6.3 AI MODEL EDITOR

6.3.1 COMPONENT DESCRIPTION
The AI Model Editor will provide support for creating, editing, and sharing computational AI

models.

AI Model Editor will allow the end user to cover a basic workflow that includes at least the

following tasks:

• Create a project enabling collaboration (or not) with others to work with data.

• Add a notebook to the project.

• Add code and run the notebook.

• Review the model pipelines and save the desired pipeline as a model.

• Deploy and test a concrete model.

6.3.2 TECHNOLOGY BACKGROUND
The main technology used for the Component is Jupyter Notebook.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 74 of 114

6.3.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User

Stories As a <Role>
I want to
<Action>,

so that <Reason>

UC_01
Data
Consumer

Create a project
with the AI editor

Manage AI
Models

Alpha
Check project
created
properly

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_02
Data
Consumer

Add a notebook
to project

Manage AI
Models

Alpha
Notebook
added properly

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_03
Data
Consumer

Add code and run
the notebook

Manage AI
Models

Alpha
Check the
notebook code

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_04
Data
Consumer

Review the model
pipelines and save
the desired
pipeline as a
model

Manage AI
Models

Alpha
Check that
model saved
exists

Done PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

UC_05
Data
Consumer

Deploy and test a
concrete model

Deploy and test AI
Models

Beta
Model
accessible to be
tested.

Upcoming PISTIS.
OUS.0

3,
PISTIS.
OUS.0

7

6.3.4 FUNCTIONAL REQUIREMENTS

This section provides the functional requirements of the ML Model Editor:

ID Description
Related Use

Cases
Comments

FR_01 Create, edit, and sharing
computational AI models

UC1, UC2, UC3,
UC4 and UC5

6.3.5 NON-FUNCTIONAL REQUIREMENTS
There are no non-functional requirements at the moment.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 75 of 114

6.3.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

Regarding the ML Model Editor component, reusing current open-source technologies is the

preferred approach over developing the component itself. Since Jupyter Lab was the

technology chosen in this instance, Figure 38, which displays the many architectural layouts

of the essential components of the Jupyter ecosystem, can be used as a point of reference.

Figure 38: AI Model Editor Architecture5

6.3.7 MOCK-UPS AND SCREENSHOTS

In the case of the ML Model Editor component, the development of a UI itself is not

contemplated but rather the use of GUI associated with the technology used for said

component, which is Jupyter Lab.

The Jupyter Lab interface consists of a primary work area with tabs for documents and
activities, a collapsible left sidebar, and a menu bar. The left sidebar includes a file browser, a
list of running kernels and terminals, the command palette, the notebook cell tools inspector,
and a list of tabs.

5 https://docs.jupyter.org/en/latest/projects/architecture/content-architecture.html

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 76 of 114

A screenshot of Jupyter Lab UI is shown in Figure 39.

Figure 39: Jupyter Lab UI.

7 SECURITY, TRUST & PRIVACY PRESERVATION BUNDLE

The Security, Trust & Privacy Preservation bundle offers services for strengthening data

security and privacy.

This bundle consists of the following components:

• Anonymizer

• Lineage Tracker

• GDPR checker

• Searchable Encryption

• Encryption/Decryption Engine

• Access Policy Editor

These are presented in the following sub-sections.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 77 of 114

7.1 ANONYMIZER

7.1.1 COMPONENT DESCRIPTION

The anonymizer is a component responsible for preserving data privacy. It alters data in such
a way that it will preserve its usefulness but hide the original data. With these modifications,
it cannot be traced back to the individuals the data was taken from.

The anonymizer is capable of taking a dataset and obfuscating the contained data by replacing
it with values that represent the original data in a way that is non-identifying (e.g. an age of
29 may be replaced with [20-30] or a name Darren Smith may be replaced with Darren *****).
This is known as data masking.

Via the frontend interface, users will be able to configure the anonymization process by
selecting different anonymization pre-sets, which can be applied to a column in their dataset,
or they can use advanced settings to allow for more configurability in their anonymization. To
see how their choices will impact the result, a preview button is available. Upon clicking this
button, users will see a subset of their dataset with their current anonymization options
applied to it. This will help users understand the impact of their choices.

The PseudoID generator is a smaller component, capable of producing a unique ID for a user
who wishes to share their data as an anonymous user. This ID may then be used for the
purposes of communication with the data provider whilst preserving their anonymity.

The Anonymizer also supports ‘Location Privacy’. ‘Location Privacy’ is defined as “the ability
of an individual to move in public space with the expectation that under normal circumstances
their location will not be systematically and secretly recorded for later use”.

The existence of location databases stripped of identifying tags can leak information. For
instance, if I know that Vera is the only person who lives on Dead End Lane, the datum that
someone used a location-based service on Dead End Lane can be reasonably linked to Vera.

Since location privacy definition and requirements differ depending on the scenario, no single
technique is able to address the requirements of all location privacy categories. Therefore, in
the past, the research community, focusing on providing solutions for the protection of
location privacy of users, has defined techniques that can be divided into three main classes:
anonymity-based, obfuscation-based, and policy-based techniques. These classes of
techniques are partially overlapped in scope and could be potentially suitable to cover
requirements coming from one or more of the categories of location privacy.

It is easy to see that anonymity-based and obfuscation-based techniques can be considered
dual categories. Anonymity-based techniques have been primarily defined to protect identity
privacy and are not suitable for protecting position privacy, whereas obfuscation-based
techniques are well suited for position protection and not appropriate for identity protection.
Anonymity-based and obfuscation-based techniques could also be both exploited for
protecting path privacy. Policy-based techniques are in general suitable for all location privacy
categories, although they are often difficult to understand and manage for end users.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 78 of 114

It is important to consider the notion of utility within the context of anonymising location data
– if the data seeker is looking to understand different groups mobility patterns to inform public
transport planning for example accurate location data over time at scale is imperative.
Therefore, supporting location privacy has to also consider the impact on the utility of that
data – it will impact the monetary value of that data if the necessary insights can no longer be
reliably derived from that data.

Location Privacy as a result is supported through a mechanism to generate new Synthetic Data
that has the same format and statistical properties as the original location data.

Synthetic data can then be used to supplement, augment and in some cases replace real data
when training Machine Learning models. Additionally, it enables the testing of Machine
Learning or other data dependent software systems without the risk of exposure that comes
with data disclosure.

Finally, the anonymizer supports the use of differential privacy to allow for generalised insights
to be derived from data in such a way that reverse engineering to re-identify individuals within
a dataset is not possible.

7.1.2 TECHNOLOGY BACKGROUND

Anonymizer Technical Overview

The anonymizer consists of a few modularized components. The k-Anonymity provided by the
anonymizer will be supported by a dockerized java application using a springboot API. The rest
of the anonymization functionality (deletion, data masking, location anonymization,
differential privacy and pseudonymization) will be supported by a dockerized python
application with a Flask API as an interface. These two components will use APIs to
communicate internally while a third outward facing Flask API with a uWSGI server provides
accessibility to all anonymization functions from a single API.

Anonymizer Technical Details

K-Anonymity

The main functionality of the anonymizer is handled by the ARX data anonymization java

library. The anonymizer uses a k-Anonymity algorithm from the ARX library to remove

identifying attributes from a dataset based on parameters provided by the user. This is

supported by Jackson to convert the dataset and dataset structure to a format that is readable

by ARX.

The API functionality is supported by springboot. This is responsible for deploying the

application on port 8080 of the localhost and exposing the API methods for external use.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 79 of 114

Deletion

Based on user selection the anonymiser will delete columns and/or rows containing personally
identifiable information and/or sensitive data within a dataset.

Data Masking

The Pandas Python Library provides a basic data masking capability. It can be used to

obfuscate data by targeting either whole columns or using conditional statements to isolate

target values. To increase the variety of masking capabilities we use msticpy to provide

hashing functions that we can apply to data while preserving syntax. For example, we may

want to provide a hash of an email while preserving its syntax. Msticpy provides syntax

preserving hashing for the following formats: string with delimiters; both IPv4 and IPv6

addresses; Several string ID formats such as SID and GUID; Account names while ignoring

system names such as root and NT AUTHORITY/SYSTEM; and more. These functions are used

both on a single data item or entire DataFrames. These functions are only intended to mask

data. No real attempt is made to preserve the syntax and meaning of the output.

Pseudonymisation

This will be supported through the use of the open-source python package called Faker. It is a

package that generates fake data by selecting random entries in a database of values based

on the category. Faker has a variety of categories such as names, addresses, phone numbers,

dates/time, emails, etc.

By creating an instance of the faker generator and selecting a category a pseudonym

correlating to that category will be generated and returned for use in the dataset. Below is an

example of its use (code in yellow, results in purple).

from faker import Faker

fake = Faker()

fake.name()

'Lucy Cechtelar'

fake.address()

'426 Jordy Lodge, Cartwrightshire, SC 88120-6700'

fake.text()

'Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam

excepturi beatae sint laudantium consequatur. Magni occaecati itaque sint

et sit tempore. Nesciunt amet quidem. Iusto deleniti cum autem ad quia

aperiam. A consectetur quos aliquam. In iste aliquid et aut similique

suscipit. Consequatur qui quaerat iste minus hic expedita. Consequuntur

error magni et laboriosam. Aut aspernatur voluptatem sit aliquam. Dolores

voluptatum est. Aut molestias et maxime. Fugit autem facilis quos vero.

Eius quibusdam possimus est. Ea quaerat et quisquam. Deleniti sunt quam.

Adipisci consequatur id in occaecati. Et sint et. Ut ducimus quod nemo ab

voluptatum.'

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 80 of 114

Faker Optimisations

The Faker constructor takes a performance-related argument called use_weighting. It

specifies whether to attempt to have the frequency of values match real-world frequencies

(e.g. the English name Gary would be much more frequent than the name Lorimer). If

use_weighting is False, then all items have an equal chance of being selected, and the

selection process is much faster. The default is True.

Generalisation

Differential Privacy

DiffPrivLib is a python library supported by IBM that supports differential privacy in machine

learning models. It is responsible for injecting mathematical noise into machine learning

results to prevent re-identification of individuals by reverse engineering using standard

differential privacy mechanisms such as Laplace distributions to determine appropriate

amounts of noise. A privacy budget is also used to limit the amount of information that can

be gained via queries and other means of data access. Each query expends privacy budget

until the privacy budget reaches its maximum at which point further queries will be denied.

By default, no privacy budget is used meaning that based on sensitivity requirements.

DiffPrivLib currently supports a subset of machine learning algorithms and pre-processing
using similar syntax to the scikit-learn python library. The library supports algorithms for
clustering, classification, regression, dimensionality reduction and pre-processing.

Based on sensitivity requirements provided by the user and other PISTIS components the
correct algorithm will be selected and configured.

Anonymizer Location API Technical Details

The location handler is a python-based component responsible for the anonymization of any

columns containing latitude and longitude data. It uses a combination of pandas, numpy and

Conditional Tabular Generative Adversarial Networks (CTGAN) from the sdv library to deliver

location anonymization. To provide an internal API to pass data between the Anonymizer it

uses Flask to implement an API.

CTGAN is a Generative Adversarial Networks (GAN) based model used to model tabular data

distribution and sample rows from the distribution. Its primary focus is generating synthetic

data that maintains the trends of the original data whilst removing identifiable features of the

original.

GAN algorithms are algorithms typically used for generating synthetic data particularly in

video, voice, and image generation. The algorithm works by initialising two separate networks,

one called the generator and one called the discriminator. The generator is fed a random input

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 81 of 114

and generates synthetic data based on this input. The discriminator is fed real data and

determines whether the synthetic data generated by the generator is fake or real. Based on

the judgment given by the discriminator the generator will adjust its output accordingly until

the discriminator determines that the generator is able to produce accurate synthetic data.

CTGAN is a GAN-based model focusing on using the same technology for tabular data. The

location handler uses a CTGAN algorithm configured at 450 epochs (or training cycles). The

location columns are fed to the algorithm as training data then the algorithm generates an

equal amount of synthetic data to replace the original location data. This allows it to maintain

the same trends whilst randomizing the location to conceal the true identity of the data

subject.

7.1.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status

As a <Role> I want to <Action>,
so that
<Reason>

UC_01 Data Provider
apply anonymisation
to my data

personal
information can
be hidden

Alpha

Data Provider
is able to hide
Personally
Identifiable
Information
(PII) from the
Data Seeker

Done

UC_02 Data Provider create a fake ID
to hide my real
ID that my data
belongs to

Alpha

Data Provider
is able to
generate a
Pseudo
Identity to
hide their real
identity

Done

UC_03 Data Provider
be able to select a
pre-set
anonymisation level

I can anonymise
data using a
specific
approach

Alpha

Data Provider
is able to
select the
anonymisatio
n approach
they wish to
apply to the
dataset

Done

UC_04 Data Provider

Be able to have more
granular control over
the anonymisation
configuration

I have flexibility
over how my
data is shared

Alpha

Data Provider
is able to
control the
settings
within an
anonymisatio
n pre-set

Done

UC_05 Data Provider

Generate Synthetic
Data with same
properties as my data

It is harder to
attribute the
data back to me

Beta

Data Provider
is able to
create an
equivalent
synthetic
dataset that
has the same

UPCO
MING

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 82 of 114

mathematical
and statistical
properties as
the original
real dataset

7.1.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 Allow the user to select what data columns they want to
anonymise

PISTIS.OUS.03

FR_02 Allow the user to customise what anonymisation level they
wish to apply to their data

PISTIS.OUS.03

FR_03 Present a preview of the result of the users selected
anonymisation configuration

PISTIS.OUS.03

FR_04 Remove Personally Identifiable Information (PII) or other
sensitive data

PISTIS.OUS.03

FR_05 Obfuscate PII or other sensitive data PISTIS.OUS.03

FR_06 Obfuscate Location Data PISTIS.OUS.03

FR_07 Data Swapping PISTIS.OUS.03

FR_08 Inject random statistical noise into statistical and
machine-learning analyses carried out over the data.

PISTIS.OUS.03

FR_09 Present a preview of an anonymised dataset PISTIS.OUS.03

7.1.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
effectively anonymises user data, obscuring identifiable
information such as IP addresses, geographic location, and other
personally identifiable information (PII).

Performance
efficiency

NFR2

The anonymizer should provide acceptable performance levels,
including minimal latency and high throughput, to ensure a
smooth user experience. Performance requirements may vary
depending on factors such as the number of users, the volume of
traffic, and the complexity of anonymization algorithms.

Scalability NFR3

The anonymizer should be able to scale horizontally or vertically
to accommodate increasing user demand and traffic volume
without compromising performance or availability. This may
involve deploying additional resources dynamically or optimizing
resource utilization

Availability NFR4
should be highly available, with minimal downtime or service
interruptions, to ensure continuous access for users

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 83 of 114

Reliability NFR5

The anonymizer should be reliable and dependable, consistently
delivering accurate anonymization results and maintaining data
integrity. This includes error handling mechanisms, data validation
checks, and proactive monitoring to detect and address potential
issues.

Security
NFR6 employ robust security measures to protect user data from

unauthorised access, interception, or tampering

Compliance

NFR7 The anonymizer should comply with relevant legal and regulatory
requirements governing data privacy, security, and anonymity.
This may include compliance with regulations such as GDPR, CCPA,
HIPAA, and industry-specific standards for data protection.

Usability NFR8 The anonymizer should be user-friendly and easy to use, with
intuitive interfaces and clear documentation. Users should be able
to configure anonymization settings, monitor system status, and
access support resources conveniently.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 84 of 114

7.1.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE

The figure below shows the internal architecture of the anonymiser. Its main elements include

support for all the functionality described in Section 7.1.2.

Figure 40: Component’s Internal Architecture

7.1.7 SCREENSHOTS

Figure 41: Initial Anonymiser Screen

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 85 of 114

Figure 42: Anonymiser Obfuscation Utilities

Figure 43: Obfuscation Anonymiser Preview

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 86 of 114

Figure 44: Anonymiser K-Anonymity

Figure 45: Anonymiser K-Anonymity Solutions

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 87 of 114

Figure 46: Preview of Dataset after K-Anonymity Solution is selected

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 88 of 114

7.2 LINEAGE TRACKER

7.2.1 COMPONENT DESCRIPTION
The Lineage Tracker documents operations performed on a dataset as well as by whom and

when the operations were performed. By constructing the dataset’s lineage representing its

version history, the Lineage Tracker provides the user with transparency and access to

previous dataset versions.

The Lineage Tracker offers API endpoints to document the operations performed on a specific

dataset and to receive lineage information in a structured format. When a user creates, reads,

updates or deletes a dataset, this information is converted into RDF-format (Linked Data)

using the W3C PROV-Ontology and saved in a triple store. Each dataset’s lineage graph is then

continuously extended with every operation. Users can then retrieve lineage information by

querying the API for a dataset’s history, lineage, family tree, and a user’s history.

Lastly, the Lineage Tracker offers a user-friendly user interface (UI), allowing the user to view

a dataset’s family tree, lineage, and history of operations. More specifically, the UI displays

this information in the form of a tree and table, showing the user every operation performed

on each dataset.

7.2.2 TECHNOLOGY BACKGROUND
The Lineage Tracker consists of a REST API for documenting operations and retrieving lineage

information, a database for storing this lineage information, and a frontend UI for visualizing

it.

The REST API is built in Python using the Flask framework to realize the micro service

architecture and python-prov library for managing lineage data. Flask is a lightweight and

flexible web application framework for Python that allows for the quick development of

extensible and modular REST APIs. Furthermore, python-prov is a Python library

implementation of the W3C PROV-Ontology, allowing for the creation, manipulation, and

export of lineage data according to the W3C PROV Data Model.

When a dataset’s lineage is constructed, the resulting RDF graph is stored in an Openlink

Virtuoso triple store, where it can be updated and queried. An Openlink Virtuoso triple store

is a high-performance database designed to store and manage RDF data. Furthermore, it

supports SPARQL queries for accessing data, making it suitable for storing and retrieving

complex lineage information.

Lastly, the frontend UI is realized using Vue.js, an open-source JavaScript framework used for

building user interfaces in single-page applications. In addition, the frontend employs Pinia for

state management and Boostrap for responsive CSS styling.

7.2.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 89 of 114

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status

WP1
User

Stories As a <Role>
I want to
<Action>,

so that <Reason>

UC_01

Data
Consumer/
Data
Provider

Explore the
version
history of a
dataset.

I get an overview of
the operations
performed on it/I can
see how my dataset
performs (is being
used).

Alpha
(Backend)
Beta (UI)

Data Consumer
can view all
versions of a
dataset and all
CRUD
operations
performed on
it.

Done
(Backend)

In progress

(UI)

PISTIS.
OUS.

07

UC_02
Data
Provider

Access
previous
version(s) of
a dataset.

I can use the specific
version, which suits
my needs for further
purposes.

Alpha
(Backend)
Beta (UI)

Data Provider
can access all
versions of a
dataset.

Done
(Backend)

In progress

(UI)

PISTIS.
OUS.

08

UC_03
Data
Consumer

Verify who
is accessing/
manipulatin
g my
dataset.

I have visibility over
who is accessing my
data.

Alpha
(Backend)
Beta (UI)

Data Provider
can view all
Data Consumer
accessing
dataset.

Done
(Backend)

In progress

(UI)

PISTIS.
OUS.

08

7.2.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Document (via API) and on request provide (via API and UI)
the information that a new dataset was checked in.

PISTIS.OUS.01

FR_02 Document (via API) and on request provide (via API and UI)
the information that a dataset was modified.

PISTIS.OUS.03

FR_03 Provide data lineage information to contribute to the
quality assessment of a dataset.

PISTIS.OUS.04

FR_04 Provide data lineage information to the data valuation
service (via API).

PISTIS.OUS.07

FR_05 Provide data lineage information to the analytics engine
(via API).

PISTIS.OUS.08

7.2.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The Lineage Tracker adheres to all functional requirements.

Performance
efficiency

NFR2
The Lineage Tracker stores and retrieves lineage information,
maintaining high throughput and low latency in data processing.

Compatibility NFR3
The Lineage Tracker can be integrated with any PISTIS components that
need to access the operation documentation and information retrieval
API endpoints.

Usability NFR4
The Lineage Tracker allows users to view lineage information in an
intuitive, user-friendly user interface.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 90 of 114

Reliability NFR5
The Lineage Tracker guarantees all API endpoints are available with
minimal downtime. Proper error messages are provided with all failed
requests.

Security

NFR6

The Lineage Tracker guarantees only the Factory Data Storage can access
Operation Documentation API endpoints and only authorized users can
access Information Retrieval API endpoints.

Portability
NFR7 The Lineage Tracker is containerized and can be deployed across different

operating systems and environments.

7.2.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
Brief description of internal component’s elements and the architecture of the component

Per Figure 47Figure 1 below, the Lineage Tracker consists of the Flask REST API, Openlink

Virtuoso triple store, and Vue.js UI.

The Flask REST API is used to create operation documentation and information retrieval API

endpoints that can be called by the Factory Data Storage and end users, respectively.

Furthermore, the Flask REST API coordinates between requests from the Factory Data Storage

and end users, and the Openlink Virtuoso triple store. When a dataset is created, updated,

deleted, or read by a user, the Factory Data Storage makes corresponding changes to the

dataset and then calls the Flask REST API to record this lineage information. The python-prov

library is then used to convert this lineage data to RDF, which is stored in the Virtuoso triple

store as a graph. Whenever a dataset is created, updated, deleted, or read, this corresponding

graph is also updated.

The Openlink Virtuoso triple store is used to store lineage information. Whenever a dataset is

created, updated, deleted, or read by a user, the Factory Data Storage stores this resulting

RDF data in the Openlink Virtuoso triple store. Furthermore, whenever a user requests lineage

data, this data is retrieved from the Openlink Virtuoso triple store using a SPARQL query.

Vue.js is used to visualize the lineage information in a user-friendly UI. When a user wants to

view a dataset’s lineage information, they can do so using the Vue.js UI, which in turn requests

this data from the Flask REST API. The Vue.js UI then displays this information in the form of a

tree and table, allowing the user to view a dataset’s family tree, lineage, and history of

operations.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 91 of 114

Figure 47: Lineage Tracker Architecture Diagram

7.2.7 MOCK-UPS AND SCREENSHOTS
The first mock-up below provides information on a dataset’s lineage information. Specifically,

the mock-up shows a dataset’s family tree in the form of a graph as well as the dataset’s

lineage history in the form of a table.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 92 of 114

Figure 48: View Dataset Lineage

The second mock-up below compares the differences between two datasets in a family tree.

Specifically, the mock-up shows a dataset’s family tree in the form of a graph and highlights

the differences between two datasets in the form of a table.

Figure 49: View Dataset Version Changes

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 93 of 114

7.3 GDPR CHECKER

7.3.1 COMPONENT DESCRIPTION
The GDPR Checker component is responsible for ensuring compliance with the EU General

Data Protection Regulation (GDPR). In a nutshell, the GDPR Checker not only checks

compliance with respect to anonymity but also against the privacy profile (e.g., anonymity,

linkability, observability, etc.) of the user. More specifically, this privacy profile will be checked

against the data that is going to be uploaded to the PISTIS platform and can be exchanged

through the platform to ensure compliance. The necessary level of privacy depends on the

sensitivity and nature of the data, as well as the application requirements that produce this

data. These privacy profiles, based on the characteristics of the data, can capture the required

level of privacy protection. These measures (privacy profiles) are expressed as GDPR-

alignment policies. Policies need to be in the form of "if type of data X and type of data Y is

exposed, then this can have an impact on the privacy property k (e.g., anonymity) of the user."

Considering this, the core functionality of the GDPR Checker is to generate a type of smart

contract that can act as certification of GDPR compliance (including the user's consent) for

further processing of the data. The component will consider the labels of the data (from the

Data Quality Assessment component) and the privacy profiles (to be defined by the

organization's legal entity) and will provide either a certification of compliance with GDPR or

static mitigation suggestions to the PISTIS Platform UI.

GDPR Checker will be implemented as a rule-based engine that will be filled with a sample of

our own rules for the Alpha version. This implementation is not the final version of it since the

actual rules will be provided by our partners that are leading the legal issues.

7.3.2 TECHNOLOGY BACKGROUND
The GDPR Checker component utilizes modern web technologies to provide compliance

solutions in line with the EU General Data Protection Regulation (GDPR). At its core, the

system is developed using Node.js and the application logic and compliance rules are

implemented in TypeScript.

For its interfacing with other components and external clients, the GDPR Checker exposes

RESTful APIs. These APIs allow for a standardized way of communicating with other parts of

the system, facilitating requests for data validation, retrieval of compliance reports, and

submission of privacy policies for analysis.

7.3.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #
Use Case

Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 94 of 114

US_01 Data Provider

know whether my
data/dataset comply
with the GDPR
regulation
(according to
generic rules

make the
necessary
actions (e.g.,
anonymisation
s)

Alpha
GDPR
compliance
report

Done PISTIS.
OUS.4
&
PISTIS.
OUS.7

US_02 Data Consumer

rest assured that the
data I acquired are
GDPR compliant
(according to
generic rules)

no legal issues
occur

Alpha
GDPR
compliance
report

Done PISTIS.
OUS.4
&
PISTIS.
OUS.7

US_03 Data Provider

know whether my
data/dataset comply
with the GDPR
regulation
(according to the
official rules)

make the
necessary
actions (e.g.,
anonymisation
s)

Beta
GDPR
compliance
report

In
Progre
ss

PISTIS.
OUS.4
&
PISTIS.
OUS.7

US_04 Data Consumer

rest assured that the
data I acquired are
GDPR compliant
(according to the
official rules)

no legal issues
occur

Beta
GDPR
compliance
report

In
Progre
ss

PISTIS.
OUS.4
&
PISTIS.
OUS.7

7.3.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 GDPR compliance check process
for a specified dataset.

UC_1, UC_2 This compliance report will be
considered in the Data Valuation
process.

FR_02 GDPR compliance certificated
stored in the Public Ledger as a
proof of compliance.

UC_1, UC_2 Other PISTIS components can check
the datasets compliance.

FR_03 If dataset is not GDPR compliant
potential mitigation measures in
the form of suggestions will be
provided to the used (Data
Provider)

UC_1, UC_2 The Data Provider will be responsible
to perform any of the suggestions
(e.g., use the Anonymizer)

7.3.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
GDPR compliance check should be performed in efficient way.

Usability NFR2
Authorized entities should easily check GDPR compliance through the
Public Ledger stored certificate.

Reliability NFR3
Compliance results should be reliable and displayed only to authorised
entities.

Security NFR4 Only authorized entities should check GDPR compliance and the GDPR

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 95 of 114

certificate should be stored in a way this could not be altered.

7.3.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The GDPR Checker tool is architected to ensure that data handling processes comply with

GDPR standards through a structured evaluation system. It integrates two key modules for

initial data analysis: the 'Sensitive Data Identification' module and the 'Privacy Policy

Identification' module. The former scans for sensitive personal information, while the latter

examines associated privacy policies for GDPR compliance requirements. The outputs from

these modules are then analysed by the 'Check Compliance' module, which assesses

conformity to GDPR norms. Depending on the results of this assessment, the tool either issues

a 'Certificate of Compliance' or provides 'Static Mitigation Recommendations' to address any

compliance shortfalls. This architecture enables a systematic approach to validate and ensure

adherence to GDPR mandates.

Figure 50: GDPR Checker High Level Architecture

7.3.7 MOCK-UPS AND SCREENSHOTS
The component doesn’t have a GUI.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 96 of 114

7.4 SEARCHABLE ENCRYPTION

7.4.1 COMPONENT DESCRIPTION
The Searchable Encryption (SE) component is a fundamental aspect of the PISTIS platform and

enables data users to search over the encrypted data (or indexes to data). In other words, it

allows users to perform searches on data that has been encrypted, ensuring that sensitive

information is protected from unauthorized access. Indeed, SE not only protects the data

privacy of Data Providers but also enables data users to search over the encrypted data.

However, it assumes that the user sending the search query owns the decryption key and that

the sender must know the identity of the user querying the data in order to encrypt using the

corresponding encryption key. This raises the question of how to achieve this since the

encrypted data are shared between several receivers. To remedy this, we can borrow ideas

from attribute-based encryption (ABE), where only participants with the appropriate

permissions and the corresponding ABE (matching) attribute private keys can decrypt and

view the encrypted data (indexes). Concretely, the secret decryption key of the encrypted

indexes is related to a set of attributes in some fashion, for which holds that if there is a subset

of attributes that consists of at least t attributes that match the set of attributes associated

with the secret keys, then the secret keys can be used to decrypt them.

In the context of PISTIS, the SE component will adopt a dynamic searchable encryption (DSE)

scheme over encrypted indexes stored in the Blockchain and the Factory Data Storage. In

addition, SE enables the exposure encrypted up to a certain level of granularity of the type of

data but not the content of the data. For instance, we can identify the type of data based on

keywords associated with that data. In other words, such encrypted indexes serve as pointers

to the encrypted stored data. DSE supports efficient data or keyword modification via an

update mechanism. On top of that, the mapping between the keywords and the encrypted

indexes will be stored in the Blockchain.

Searchable Encryption is not going to be included in Alpha version of PISTIS. The following

sections define what is needed and the whole architecture of this component shortly, but the

implementation will take place in the Beta phase.

7.4.2 TECHNOLOGY BACKGROUND
The Searchable Encryption component is designed around the concept of Dynamic Symmetric

Searchable Encryption (DSSE), a system that allows for the searching of encrypted data

quickly and efficiently. DSSE is crucial for maintaining privacy while ensuring that data retrieval

processes are swift and effective, especially important when dealing with large volumes of

data stored in cloud environments.

This component is implemented using Node.js and the implementation also involves the use

of cryptographic libraries and APIs that support the operations of DSSE. These libraries ensure

the secure handling of encryption keys and the execution of encryption algorithms,

maintaining data confidentiality while enabling the search functionality. The use of these

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 97 of 114

technologies ensures that the Searchable Encryption component can securely manage, index,

and retrieve encrypted data without exposing sensitive information.

7.4.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Storie
s As a <Role>

I want to
<Action>,

so that
<Reason>

US_01
Data
Consumer

search datasets
based on specific
keywords

I can buy
them

Beta
Search
results

In
Progr
ess

PISTIS.
OUS.9

US_02 Data Provider
hide actual type of
data

I can protect
my privacy

 Beta
Search
results

In
Progr
ess

PISTIS.
OUS.9

US_03 Data provider
only users with
specific attributes
to search my data

I can protect
my privacy

 Beta
Search
results

In
Progr
ess

PISTIS.
OUS.9

US_04 Data Provider

to dynamically
update the
encrypted
keyword

the keyword
to be more
accurate
upon changes

 Beta
Search
results

In
Progr
ess

PISTIS.
OUS.9

US_05
PISTIS
Administrator

be sure that only
authorised PISTIS
user can search
and buy datasets

confidentialit
y and
authenticatio
n
requirements
are met

 Beta
Search
results

In
Progr
ess

PISTIS.
OUS.9
&
PISTIS.
SOUS.
01

US_06
PISTIS
Administrator

be sure that a
reasonable
number of queries
per user will be
done

the PISTIS
platform to
be efficient

 Beta
Search
results

In
Progr
ess

PISTIS.
OUS.9
&
PISTIS.
SOUS.
01

7.4.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Searchable Encryption supports
encryption with specific attributes
defined by the Data Provider

UC_3, UC_4, UC_5 These attributes are
part of the verifiable
credentials of Data
Consumers

FR_02 Searchable Encryption supports
search upon encrypted data with
specific attributes defined by the Data
Provider

UC_1, UC_2, UC_5 These attributes are
part of the verifiable
credentials of Data
Consumers

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 98 of 114

7.4.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1 All entities with the specified attributes will be in position to decrypt the
corresponding encrypted data (e.g., index).

Performance
efficiency

NFR2 Encryption/decryption and search functionalities should be performed in
efficient way.

Compatibility
NFR3 All entities with the specified attributes will be in position to decrypt the

corresponding encrypted data (e.g., index).

Usability NFR4
Authorized entities should easily search encrypted data indexes through
the PISTIS platform.

Reliability NFR5
Search results should be reliable and displayed only to authorised
entities.

Security
NFR6 Data confidentiality and privacy of data provider and data consumer

should be supported.

7.4.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
Figure 51 below presents the high-level architecture of the Searchable Encryption including

the internal components of the tool. Such a component represents a significant advancement

in secure data handling. It exemplifies how modern encryption techniques can be harmonized

with emerging technologies like blockchain to create a secure, transparent, and efficient data

management system. This component is pivotal in enabling the PISTIS platform to handle

sensitive data with the utmost security while ensuring that the data remains accessible and

useful for authorized users.

￼

Figure 51: Searchable Encryption high-level Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 99 of 114

7.4.7 MOCK-UPS AND SCREENSHOTS
As this component is a backend component, no UI is provided.

7.5 ENCRYPTION/DECRYPTION ENGINE

7.5.1 COMPONENT DESCRIPTION
The Encryption/Decryption engine within the PISTIS platform is a comprehensive and versatile

tool designed to handle a wide array of encryption and decryption needs. This component not

only supports standard encryption methodologies, such as symmetric and asymmetric

encryption, but also extends its capabilities to ensure robust data protection and privacy

across various aspects of the platform. Moreover, in the context of the SSI concept the key for

encryption/decryption is associated with the Self-Sovereign Identity (SSI) of the user.

7.5.2 TECHNOLOGY BACKGROUND
The Encryption/Decryption Engine component is built using a combination of Flask, a

lightweight Python web framework, and C. The core functionality of the engine, which

involves the actual encryption and decryption of data, is implemented in C due to its efficiency

and performance in executing low-level computations. C's ability to interact directly with

system hardware and memory makes it ideal for implementing cryptographic algorithms that

require high-speed processing and stringent security measures.

In addition to the Flask and C implementations, the component leverages EJBCA6, a robust

Public Key Infrastructure (PKI) certificate authority software package. EJBCA supports a variety

of certificate authority functionalities and is used here to manage digital certificates and

public-keys, ensuring secure data transactions. This PKI system enables the

Encryption/Decryption Engine to support multiple CAs and different levels of CAs, facilitating

the construction of a complete and versatile security infrastructure within a single instance of

the software.

7.5.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

US_01 Data Consumer
be able to decrypt
encrypted datasets

I can see the
actual data

Alpha
Decryption
process

Done PISTIS.
OUS.1
0

US_02 Data Provider
be able to encrypt
datasets

I can protect
data

Alpha
Encryption
process

Done PISTIS.
OUS.1

6 EJBCA Enterprise from PrimeKey, Website: https://www.primekey.com/products/software/ejbca-enterprise/

https://www.primekey.com/products/software/ejbca-enterprise/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 100 of 114

confidentiality 0

7.5.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component

ID Description
Related Use

Cases
Comments

FR_01 PISTIS should support data encryption
on data transactions.

UC_1, UC_2 The receiver should
be able to decrypt
the encrypted
transaction

7.5.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Performance
efficiency

NFR1
Encryption/decryption should be performed in efficient way.

Compatibility NFR2 The data receiver should be able to decrypt the transferred data.

Reliability NFR3 No other parties should be able to decrypt and read the actual data.

Security
NFR4 Only the data receiver should be in position to decrypt the data

transaction for confidentiality purposes.

Portability NFR5 Upon an expired certificate the new one should be used.

7.5.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The Encryption/Decryption Engine is designed to secure and retrieve data by transforming it

to and from an encrypted format, ensuring data privacy and integrity. This process is essential

for protecting sensitive information in various applications. The engine includes two primary

components: the 'Encrypt' module and the 'Decrypt' module. The Encrypt module takes an

unencrypted dataset, often referred to as plaintext, and uses cryptographic algorithms to

convert it into an encrypted form, known as ciphertext. This encrypted data ensures that

sensitive information remains secure during storage or transmission. Conversely, the Decrypt

module performs the reverse operation. It takes the encrypted dataset and applies the

corresponding decryption algorithms to convert it back to its original form, making the data

accessible for authorized use. The entire process is tightly integrated with the Self-Sovereign

Identity (SSI) of the user, which manages the encryption keys, thereby ensuring that only the

user with the correct identity credentials can decrypt the data. This mechanism is pivotal in

maintaining data confidentiality and access control in compliance with privacy regulations.

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 101 of 114

Figure 52: Encryption/Decryption Engine High Level Architecture

7.5.7 MOCK-UPS AND SCREENSHOTS
As this component is a backend component, no UI is provided.

7.6 ACCESS POLICY EDITOR

7.6.1 COMPONENT DESCRIPTION
Access Policy Editor is a component integrated with Keycloak 7 identity and access

management platform within PISTIS and IAM API. The component serves as a centralized tool

allowing PISTIS Data Factory Administrators to define and apply the access policies for the

data to be placed over the PISTIS platform.

The primary goal is to simplify the definition of scope-based policies through an intuitive web-

based UI editor. By doing so, administrators gain the ability to tailor access controls for specific

use cases, encompassing user roles, and access to targeted resources within the PISTIS

ecosystem. This functionality ensures that the access policies align with the unique

organizational structure and requirements so as data living in PISTIS platform are findable with

proper access to other organizations.

7 https://www.keycloak.org

https://www.keycloak.org/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 102 of 114

Access policies generated by the Keycloak-based Access Policy Editor provide a multifaceted

approach to access control. Firstly, they dictate who has the privilege to access distinct PISTIS

Organization resources, ranging from specific features within the PISTIS Platform to exclusive

datasets owned by the organization. Secondly, these policies define the scope or rights

associated with accessible PISTIS Organization resources. This extends beyond conventional

permissions, including Create, Read, Update, Delete, and Admin, to incorporate PISTIS-specific

policies such as Trading, Transformation, Pricing, and more. Additionally, the editor allows

administrators to finely tune access on nested objects or attributes within a specific PISTIS

Organization's resource. For example, an administrator can grant read access to an entire data

stream while restricting update permissions to a specific attribute, providing granular control

over resource accessibility.

Internally, the Access Policy Editor relies on Keycloak's infrastructure. Keycloak employs a

secure and scalable database system to store and retrieve the intricate policies defined by

administrators. This ensures that policy information is organized, quickly accessible, and

securely managed. Furthermore, Keycloak leverages its advanced indexing service to optimize

the efficiency of policy enforcement during runtime. The indexing service plays a pivotal role

in accelerating the retrieval of policies, contributing to the overall responsiveness and

performance of the Access Policy Editor within the PISTIS platform. These internal

components work seamlessly to provide a dynamic, responsive, and secure access control

mechanism tailored to the specific needs of organizations utilizing the Keycloak-based Access

Policy Editor in the PISTIS environment.

Access Policy Editor will provide a web-based GUI to allow PISTIS Organization Admins to

manage their organization access and permissions as well as PISTIS Users to define extra

access policies during a Data Asset Injection and Publication phases.

7.6.2 TECHNOLOGY BACKGROUND
PISTIS Access Policy Editor component, is a web-based GUI realized with NuxtJS8 and strongly

relies on developed Identity and Access Management APIs that subsequently rely on Keycloak

APIs. The PISTIS-centric REST API is developed using Java technology and specifically Spring

Boot framework version 3.x.

7.6.3 COMPONENT BACKLOG
This section provides the full set of features that belong to the backlog of the component.

ID #

Use Case
Backlog
Priority

Acceptance
Criteria

Status WP1
User
Stories As a <Role> I want to <Action>,

so that
<Reason>

UC_01 Data Provider
Define access
policies on a newly
created asset

Can control
access to the
asset from the
organization
users

Alpha

Access to the
asset is
governed by
the policies
created by

Done PISTIS.
OUS.0
5

8 https://nextjs.org

https://nextjs.org/

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 103 of 114

the asset
owner

PISTIS.
OUS.0
1

UC_02 Data Provider
Define access
policies on a
published asset

Can control
access to the
asset from
outside users

Alpha

Access to the
asset is
governed by
the policies
created by
the asset
owner

Done PISTIS.
OUS.0
5

PISTIS.
OUS.0
6

UC_03
PISTS
Organization
Admin

Define the roles and
attributes of the
organization users

Can create role
based and
attribute-
based access
control policies

Alpha

User roles
and
attributes
are stored in
the IAM
database

Done PISTIS.
OUS.0
5

UC_04 Data Provider

Create and manage
complex access
control policies on
all organization
assets

Can have fine
grain control
on who and
when can
access a
specific asset

Alpha
(first set

of
supporte

d
policies)/

Beta

A user can
create
arbitrary
access
policies
based on
roles and
attributes of
users/assets/
organizations
. Access
control
policies can
also be time
based and
context
based

Done
(first
batch
of
suppor
ted
policie
s)

PISTIS.
OUS.0
5

UC_05 Data Provider

Define access
control policies
based on a user’s
eIDAS credentials
and attributes

Can control
access to an
asset from
external eIDAS
certified user

Beta

Access to an
asset is
based on the
attributes of
a user’s
eIDAS
credentials

Ongoin
g

PISTIS.
OUS.0
5

7.6.4 FUNCTIONAL REQUIREMENTS
This section provides the functional requirements of the component.

ID Description
Related Use

Cases
Comments

FR_01 Allow a PISTIS User (data provider) to create extra
access policies, referring to its Organization, for a
Data Asset during Injection phase

PISTIS.OUS.01,
PISTIS.OUS.05

FR_02 Allow a PISTIS User (data provider) to create extra
access policies for a Data Asset during Publication
phase

PISTIS.OUS.01,
PISTIS.OUS.05

FR_03 Allow PISTIS Organization Administrators to manage
their organization users and assign roles

PISTIS.OUS.02

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 104 of 114

FR_04 Allow PISTIS Organization Administrators to manage
access policies for Data Assets belonging to users of
the organization

PISTIS.OUS.05

FR_05 Provide list of effective Access Policies of a PISTIS
Asset to be bundled in the Blockchain

PISTIS.OUS.01 Provided to
Asset
Description
Bundler and
Data CheckIn
during
Injection and
Publication
of a Data
Asset

FR_06 Register a new PISTIS Asset with its Access Policies
specific attributes in Keycloak and create a set of
default policies within the specific Organization

PISTIS.OUS.01 Provided to
Data CheckIn
during Asset
Injection

FR_07 Register the publication of a PISTIS Asset with its
Access Policies specific attributes in Keycloak and
create a set of default policies within PISTIS
ecosystem

PISTIS.OUS.01 Provided to
Data CheckIn
during Asset
Publication

FR_08 Register a used-defined access policy for a PISTIS
Asset during asset injection phase

PISTIS.OUS.01 Provided
during Asset
Injection

FR_09 Register a used-defined access policy for a PISTIS
Asset during Publication phase

PISTIS.OUS.01 Provided
during Asset
Publication

FR_10 Management of complex access policies, defined by
PISTIS Organization Administrators via Access Policy
Editor web-based

PISTIS.OUS.05 Provided to
Access Policy
Editor

7.6.5 NON-FUNCTIONAL REQUIREMENTS
The following table presents the non-functional requirements of the component (if any).

Requirement
Sub-category

Id Description (Detailed description of the requirement)

Functional
Suitability

NFR1
The access policy editor complies with all specified functional
requirements

Performance
efficiency

NFR2
The defined access policies can be enforced, by the access policy engine,
without introducing long delays to the rest of the operations

Compatibility NFR3
The access policy editor REST API service is compatible with all other
components capable of sending REST API requests and processing the
received responses.

Usability NFR4
The definition of the access policies is simplified to the point that an
untrained user can select the correct policies without having software
development experience

Security NFR5 The access policy editor can be accessed only by authorized users

Security
NFR6 Definition of access policies for specific assets is done only by users

that belong in he same organization

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 105 of 114

7.6.6 COMPONENT’S MAIN ELEMENTS AND INTERNAL ARCHITECTURE
The main elements of Access Policy Editor are:

• A standalone Web-based GUI to provide to the PISTIS Organisation Administrators with

ease management of Users and Policies within their organization.

• The API Adapter will provide the necessary integration layer with IAM API so as execute

complex operations within Keycloak get executed and therefore leverage user’s

experience as well as component’s efficacy.

• The Validation Service aiming to mock policies outputs for various inputs scenarios in

order to allow testing defined policies efficiency before actually deploying them. The

component will again use Keycloak available operations via API Adapter; however, it is

mentioned as a separate component for clarity.

• An included in the PISTIS UI web-based GUI to allow a PISTIS User (data provider) to

specify extra access policies (restrictions) during a Data Asset Injection or Publication.

Figure 53: Access Policy Editor Internal Architecture

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 106 of 114

7.6.7 MOCK-UPS AND SCREENSHOTS

7.6.7.1 Screens related to Data Asset Injection

Figure 54: Listing of access policies during data asset injection phase

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 107 of 114

Figure 55: Registration of a new access policy during data asset injection phase

7.6.7.2 Screens related to Data Asset Publication

Figure 56: Listing of access policies during data asset publication phase

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 108 of 114

Figure 57: Registration of a new access policy during data asset publication phase

7.6.7.3 Screens related to user management

Figure 58: Listing of PISTIS users within access policy editor

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 109 of 114

Figure 59: Create (or edit) a PISTIS user

7.6.7.4 Screens related to policies management

Figure 60: Listing of registered access policies within access policy editor

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 110 of 114

Figure 61: Registration of a new access policy within access policy editor based on user’s role

Figure 62: Registration of a new access policy within access policy editor based on user’s organization
attributes

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 111 of 114

Figure 63: Registration of a new access policy within access policy editor based on user’s organization

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 112 of 114

Figure 64: Registration of a new access policy within access policy editor based on user’s attributes

Figure 65: Registration of a new access policy within access policy editor based on data asset’s attributes

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 113 of 114

Figure 66: Registration of a new access policy within access policy editor based on time period

101093016 - PISTIS - HORIZON-CL4-2022-DATA-01-04

D2.2 - Data Management and Protection services - Alpha version Page 114 of 114

8 CONCLUSIONS

The document presents the design and development of the Alpha release of the PISTIS

components dealing with data discovery, management and protection. The functionalities of

each component have been described and the technologies that have been exploited for the

development of the corresponding alpha releases have been presented. The user stories for

each component have been specified and through them the functional and non-functional

requirements of the different components have been defined. Moreover, the internal

architecture of each component has been provided, showcasing the interconnections among

the subcomponents of each component. For the components that have a user interface,

respective screenshots depicting the components’ functionalities have been also presented.

The design and development of the alpha releases of the PISTIS components presented in this

document and in D3.2 will drive the integration activities of the project in the next period

towards realizing the delivery of the Alpha version of the PISTIS Platform (D4.2). The

components will continue to evolve with updates and new features that will be encapsulated

gradually in the following Beta and version 1.0 releases of the components and will be

documented in the corresponding D2.3 and D2.4 deliverables.

